.. В НИИ авиационной автоматики (НИИАА, позднее – ВНИИА) я попал по распределению – для выполнения дипломной работы. Чтобы понять принципы действия «авиационной автоматики», вернемся к нашим сборкам.
Поверхность сборки (рис. 2.7а), содержащей плутоний («черная сердцевина»), искусственно увеличивают, выполняя ее в форме шарового слоя (полой внутри) и заведомо подкритичной, даже – и для тепловых нейтронов, даже – и после окружения ее замедлителем
(слой желтоватого цвета). Вокруг сборки из очень точно пригнанных блоков взрывчатки монтируют заряд, также образующий шаровой слой. Читатель и сам догадывается, для чего нужен взрыв: чтобы рвать, метать, деформировать. Но чтобы сберечь нейтроны, надо и при взрыве хоть и уменьшить радиус сборки, но сохранить ее благородную форму шара, для чего подорвать слой взрывчатого вещества одновременно по всей его внешней поверхности, обжав сборку равномерно со всех сторон. Для этого служит детонационная разводка из поликарбоната – также в форме шарового слоя, плотно прилегающего к заряду взрывчатки.
Рис. 2.7
Анимация: перевод сборки в сверхкритическое состояние при имплозии. Справа – «система многоточечного инициирования»: тонкая полоска целлулоида с обернутой вокруг нее нихромовой проволокой, взятой из «сгоревшего» паяльника. Эта полоска укладывается по периферии «заряда» (оранжевого цвета) и при подаче тока инициирует реакцию в бихромате по внешней поверхности
…Предположим, у нас есть всего один детонатор, но кроме него – взрывчатка, по консистенции напоминающая пластилин, причем скорость ее детонации очень стабильна. Попробуем сначала одновременно «развести» детонацию только в две точки. Сначала просверлим в нужных местах два отверстия. Далее, взяв циркуль и, поочередно помещая его ногу в отверстия, произвольным, но одинаковым радиусом сделаем две засечки. Процарапаем или отфрезеруем (но на небольшую, меньшую, чем толщина разводки глубину) две прямые канавки, ведущие от отверстий к точке пересечения засечек. Плотно забьем и канавки и отверстия взрывчатым «пластилином», а в точке пересечения канавок установим наш единственный детонатор. Когда он сработает, детонация пробежит по канавкам абсолютно равные расстояния, а поскольку скорость ее высокостабильна – в один и тот же момент времени достигнет отверстий. В отверстия также забит взрывчатый «пластилин», в отличие от канавок, находящийся в контакте с основным зарядом, поэтому его детонация «заведет» и основной заряд – одновременно и в двух требуемых точках.
Для инициирования в трех точках задача усложнится. Вспоминаем планиметрию (правда, у нас поверхность не плоская, а сферическая, но – пойдем на такое упрощение): через три точки можно провести окружность одного-единственного радиуса (в центр ее и поместим детонатор), делать засечки произвольным радиусом уже нельзя. Для четырех точек – следующая ступень усложнения: одну из них (ближайшую к детонатору) придется соединять с детонатором не прямой, а ломаной канавкой, чтобы обеспечить равное с остальными тремя время пробега детонации.
А если точек – несколько десятков, да еще они должны равномерно покрывать всю сферическую поверхность заряда? Такая задача для сферической поверхности решается с применением методов геометрии Римана. Элемент разводки выглядит как на рис. 2.8, и не на всяком станке, даже – с числовым программным управлением, его можно изготовить, зато применение разводки позволило существенно уменьшить диаметры зарядов, по сравнению с первыми образцами, в которых для тех же целей использовались детонационные линзы. Кроме того, для заряда с разводкой необходимы всего несколько электродетонаторов в специальных, плоских розетках (рис. 2.9), в то время как для каждого «линзового» заряда их требуются десятки (рис. 2.10).