Здесь на помощь приходит хемотроника, позволяющая однозначно регистрировать миллиардные доли атмосферного давления благодаря возможности реагировать буквально на считанные молекулы носителей заряда на электроде хемотронном датчике.
Сама хемотроника возникла на стыке двух наук – электрохимии и электроники. Основой хемотроники являются приборы, использующие принцип электрохимического преобразования в твердых и жидких электролитах. Носителями заряда в этих приборах служат ионы, обладающие малой подвижностью.
К основным достоинствам хемотронных приборов можно отнести малую потребляемую мощность, высокую чувствительность по входу.
Хемоторонные датчики позволяют однозначно регистрировать миллиардные доли атмосферы, также могут реагировать буквально на считанные молекулы. При этом имеют малый уровень собственных шумов, достаточно высокую надежность и невысокую стоимость.
Недостатками хемотронных приборов являются лишь малый частотный диапазон (0 – 1 кГц), при этом жидкофазные хемотронные приборы узким температурным диапазоном (0 – 50 С). Твёрдые электролиты существенно расширяют температурный диапазон использования.
Предлагается для обнаружения медленно начинающихся процессов разрушения концевых и соединительных кабельных муфт линий электропередач использовать простейший хемотронный датчик из школьного опыта по физики далёкого 1986 года, опубликованный в популярном научно-техническом, см. рис. № 7.
Рис. № 7. Датчик хемотронный из школьного опыта по физики 1986 года.
Технология изготовления:
Сначала необходимо изготовить цилиндрический корпус. Корпус можно склеить из отдельных пластинок оргстекла, в этом случае он будет прямоугольным. Примерный диаметр круглого корпуса – 40 мм, а высота около 20 мм. С торцов цилиндра надо выточить две полости глубиной около 5 мм и диаметром 30 мм, так чтобы между ними осталась толстостенная перемычка. Непосредственно под перемычкой просверлите горизонтально отверстие диаметром 2-3 мм для заливки электролита и подберите к этому отверстию плотную пробку. Затем с противоположной стороны корпуса просверлите одно под другим еще три отверстия для электродов диаметром чуть больше миллиметра. Центральный электрод должен находиться в перемычке, верхний и нижний – в соответствующих полостях.
В качестве электродов используются толстые грифели для цанговых карандашей. Те места, где грифели выходят из корпуса, надо за герметизировать каким-либо клеем. Когда клей высохнет, в перемычке просверлите вертикально очень тонкое сквозное отверстие диаметром не более 0,5 мм. Выбирая для него место, имейте в виду, что это отверстие обязательно должно пройти через средний грифель-электрод.
Прибор уже почти готов. Осталось лишь приклеить к нему сверху и снизу по тонкой мембране из того же оргстекла, только небольшой толщины (0,3-0,5 мм). Пока приклейте только нижнюю мембрану. Теперь об электролите. В половине стакана воды растворите 20-30 г иодида калия, а затем, слегка подогрев раствор, добавьте около 1 г иода. Через боковое, более широкое отверстие залейте этот электролит внутрь датчика, в нижнюю полость, следя за тем, чтобы не осталось воздушных пузырьков. Легче всего провести эту операцию медицинским шприцем. Когда заполнится и верхняя полость, приклейте вторую мембрану и окончательно за герметизируйте корпус, для чего вставьте во впускное отверстие заранее приготовленную пробку и тщательно залейте ее клеем.
Хемотронный датчик работает от батарейки для карманного фонарика. Верхний и нижний электроды, находящиеся в полости, соедините с положительным полюсом батарейки, средний – с отрицательным. В цепь желательно включить реостат, а также вольтметр и микроамперметр, которые, как вы уже знаете, можно заменить тестером.