Известно, что уменьшение загрязнения атмосферы вредными примесями дымовых газов достигается максимальным их рассеиванием с помощью дымовых труб. Эффективность рассеивания выбросов тем выше, чем больше высота дымовой трубы и скорость газов на выходе из ее устья.

Таким образом, высокая труба, этот главный проводник выбросов – одновременно и залог чистого воздуха на близ лежащей территории. Рассеивание выбросов через дымовые трубы следует рассматривать, как вынужденное решение. Это не решает принципиально вопрос надежной охраны атмосферы, а лишь «размазывает» вредные выбросы по большой площади, доводя их концентрацию у земли до предельно допустимой нормы.

Получается, что чем выше дымовая труба, тем больше территория с относительно чистым воздухом в пределах допустимой концентрации вредных веществ.

Но каждая дымовая труба для котельной или промышленного предприятия разрабатывается в индивидуальном порядке с учетом специфики производства, состава отводимых газов и климатических особенностей района строительства. Высота трубы не может быть сколь угодно увеличена.

Необходимо найти способ транспортировать дымовые газы на большие высоты атмосферы из относительно не высоких печных труб промышленного производства без увеличения тяги.

Решение

Предлагается физически обоснованный и конструктивно реализуемый способ вертикального транспортирования дымовых газов на большую высоту без увеличения длины дымовой трубы и без вмешательства в саму систему тяги печи. Принцип действия основан на генерации последовательных вихревых тороидальных колец – особых трёхмерных воздушных структур с авто поддерживающимся движением, способных захватывать и транспортировать окружающий газ при самоорганизующемся продвижении вверх.

Центральный образ – само выворачивающийся вихревой бублик, действующий как своеобразный бесконтактный поршень:

– сам вихрь (тороиды) – поршень,

– неподвижный воздух и дымовые газы – как стенки цилиндра,

– вертикальный канал – как направление хода.

Такая структура создаёт динамику внутреннего сдвига, захватывая примыкающий к ней воздух и втягивая за собой порцию газов вверх.

Это может обеспечить только вихревой тороид обратной структуры. При распространении такой вихревой тороид само выворачивается не наружу, как кольца курильтщика, а вовнутрь к оси распространения и имеет дополнительную крутку вокруг оси распространения. Такой тороид имеет максимально возможную энергетику среди всех типов вихревых колец.



Рис. № 5. Обратный ротационный вихревой тороид.

Схематически, для заявленных целей, генератор вихревых тороидов с само выворачиванием внутрь оси распространения и ротацией вокруг оси распространения, представлен на рис. № 6.



Рис. № 6. Способ формирования обратного ротационного вихревого тороида.

Закрученное течение из сопла под действием встречного потока из диафрагмы разворачивается и образует вихревой осе симметричный газодинамический купол. Обладая определенной упругостью, вихревой газодинамический купол в передней его части является препятствием по отношению ко встречному потоку. В результате уже не отрывного обтекания потоком, за этим препятствием образуется вихревая зона обратных токов в при осевой части.

Такая конструкция в практическом плане формирует тороидальное вихревое кольцо с аксиальной круткой уже вовнутрь движения с одновременным радиальным вращением, см. рис. № 7.



Рис. № 7. Формирование обратного ротационного вихревого тороида.

Дополнительной особенности распространения вихревого кольца является тот факт, что вихревое кольцо, при движении, является объёмным, бес корпусным вихревым насосом. Само выворачивающийся бублик можно сравнить с поршнем компрессора, а неподвижный объём воздуха вокруг бублика при движении – со стенками цилиндра, в котором движется поршень (вихревой бублик).