Это объяснение основано на полной информации. Его суть так же важна сейчас, как была важна во времена древних греков: следует жить гармонично в мире, полном полярных противоположностей. Это поразительная формулировка духовных принципов, но тем не менее она не дает нам ничего, кроме информации. После того как мы закончили все эти рассуждения, мы снова возвращаемся к своим собственным мыслям и задаемся вопросом: «Итак, что мне следует делать сейчас?» Обычно, получив надлежащее объяснение, мы приобретаем способность действовать, руководствуясь обретенным пониманием. Здесь этого не происходит, поскольку передачи персонального значения и смысла не произошло, равно как и никакого непосредственного обучения на опыте. Это объяснение лишь более полно раскрыло символы, которые были непонятны поначалу и остались таковыми. Язык этих числовых символов так и остался иностранным для нашего мышления.
Искусство интерпретации – это главный навык, необходимый для того, чтобы пользоваться числовым символизмом. Чтобы научиться интерпретировать, мы должны вернуться к истокам математики, чтобы узнать, как и почему числа превратились в метафизические символы. Числа, используемые символически, являются математическими во всех смыслах этого слова. История числового символизма и история математики были неотделимы друг от друга примерно до 500 года нашей эры. Очень важно в самом начале этого краткого исторического экскурса отметить следующее: помимо того, что числа использовали для счета, измерения и подсчетов, их всегда наделяли культурными и метафизическими атрибутами.
Сегодня математика представляет собой чисто абстрактную систему. Однако в самом начале числа не были абстракцией. Первые попытки вести счет, которые были сделаны тысячелетия назад, выглядят невообразимо странно для современного ума. Тогда не было написания чисел, которым мы пользуемся сегодня, не было даже слов для обозначения этих чисел. Подсчет нередко означал вырезание линий на дереве или камне или оставление отпечатков на глиняных табличках. Конкретное число записывали, вырезая такое же количество линий: для обозначения 6 требовалось шесть линий, для обозначения 28 – двадцать восемь. Привычная косая черта по диагонали, обозначающая повторяющиеся 5, была неизвестна. Некоторые древние народы вели счет, указывая на разные части тела. Пример такого счета существует и в наши дни в одном из племен, населяющих остров Папуа: 1 – это мизинец на правой руке; 2 – безымянный палец на правой руке; 3 – средний палец на правой руке; 4 – указательный палец на правой руке; 5 – большой палец на правой руке; и так далее до числа 12, которое обозначает нос; 13 – рот; 14 – левое ухо и так далее[6]. Усложненной версией такой формы счета был счет на пальцах, который сохранялся в Европе примерно до 1700-х годов. Древние римляне могли считать на пальцах от одного до десяти тысяч.
В далеком прошлом для чисел, используемых для счета, нередко не существовало слов. Количество чего-то было частью самого слова. Так, в современном английском мы меняем существительные и добавляем «s» на конце во множественном числе (например, «tree» («дерево») – «trees» («деревья»)). В арабском языке до 700 года нашей эры слово «radjulun» означало одного человека, «radjulan» – двух человек, a «ridjulun» – несколько человек[7]. Следы точно такого же подхода мы можем найти и в современном английском языке, в таких выражениях, как «пара волов» («yoke of oxen») и «упряжка лошадей» («team of horses»). Сегодня может показаться неважным, что в некоторых языках были слова для обозначения одной вещи и двух вещей. Но на заре развития математики в некоторых культурах не существовало чисел больше двух или трех. В разное время и в разных странах 2, 3, 4 и, чаще всего, 10 (поскольку у нас 10 пальцев на руках) были пределами счета. Сегодня в это верится с трудом. В наши дни школьники хорошо знакомы и с миллионами, и с миллиардами. Однако даже в современном мире в южных странах живет племя, у которого самым большим числом является 2. Они считают от 1 до 5 следующим образом: 1, 2, 2'1,2'2, 2,2,1