Глава 3. ИЗМЕРЕНИЕ ДОХОДНОСТИ

В этой главе читателю будут представлены сведения:

• о способах подсчета доходности любой инвестиции;

• о подсчете текущей доходности, доходности к погашению, доходности к пут-опциону, доходности к колл-опциону, а также доходности денежного потока;

• о вычислении доходности портфеля в целом;

• о вычислении дисконтного спреда для ценной бумаги с плавающей ставкой;

• о трех возможных источниках прибыли от облигации;

• о сущности риска реинвестиций;

• о недостатках традиционных способов измерения доходности;

• о вычислении общей прибыли от облигации;

• о преимуществах использования меры общей прибыли вместо традиционных мер доходности;

• об анализе временных горизонтов как способе установления потенциальной прибыли от облигации.

• о способах измерения изменений доходности.


В главе 2 мы выяснили принципы ценообразования облигаций и описали взаимоотношения между ценой и доходностью. В настоящей главе речь пойдет о различных мерах доходности и об их значимости в процессе выбора наиболее выгодной с инвестиционной точки зрения облигации, а также о способах измерения изменений доходности. Обсуждение этой темы мы начнем с описания способов подсчета доходности любой данной инвестиции.

ВЫЧИСЛЕНИЕ ДОХОДНОСТИ, ИЛИ ВНУТРЕННЕЙ СТАВКИ ДОХОДНОСТИ, ЛЮБОЙ ИНВЕСТИЦИИ

Доходность (yield) любой инвестиции – это процентная ставка, которая позволит уравнять приведенную стоимость денежных потоков данной инвестиции с ценой (стоимостью) инвестиции. Таким образом, доходность инвестиции – это процентная ставка у, удовлетворяющая следующему уравнению:

В кратком виде эта формула может быть записана как:

где:

CF>t – денежный поток в год t;

P – цена инвестиции;

N – количество лет.


Доходность, полученная из данного равенства, называется также внутренней ставкой доходности (internal rate of return).

Определение доходности y в данном случае проходит методом проб и ошибок, иными словами, путем подбора. Цель процесса – нахождение значения процентной ставки, при котором приведенная стоимость денежных потоков будет равна цене. Приведем пример такой процедуры.

Предположим, что финансовый инструмент, продающийся по $903,10, обещает в будущем следующие годовые выплаты:

Вычисление доходности сводится к поиску такой процентной ставки, при которой приведенная стоимость денежных потоков окажется равной $903,10 (т. е. цене данного финансового инструмента). Подстановка процентной ставки 10 % дает следующий результат:

Приведенная стоимость, вычисленная исходя из процентной ставки, равной 10 %, превышает цену ($903,10). Таким образом, для уменьшения приведенной стоимости процентная ставка должна быть увеличена. Предположим, что она составляет 12 %. В этом случае, как видно из таблицы, приведенная стоимость окажется равной $875,71:

Мы видим, что при процентной ставке в 12 % приведенная стоимость денежного потока меньше цены финансового инструмента. Для увеличения значения приведенной стоимости следует выбрать более низкую процентную ставку. Возьмем процентную ставку, равную 11 %, и получим:

При процентной ставке 11 % приведенная стоимость денежного потока оказывается равной цене финансового инструмента. Таким образом, доходность в данном случае составляет 11 %.

Представленная выше формула вычисления доходности основана на величине денежных потоков, поступающих раз в год, однако она может быть уточнена в соответствии с количеством совершаемых ежегодно периодических выплат. Обобщенная формула выглядит следующим образом:

где:

CF>t – денежный поток в период t;

n – число периодов.


Напомним, что доходность, вычисляемая с помощью этой формулы, – это доходность в расчете на период. При поступлении денежных потоков раз в полгода мы получим полугодовую доходность. При поступлении денежных потоков раз в месяц речь пойдет о месячной доходности. Для вычисления обычной годовой процентной ставки доходность для периода умножается на число периодов в году.