Пневматические двигатели работают на сжатом воздухе давлением от 0,3 до 0,6 МПа. Сжатый воздух поступает на приводы от общего блока питания, который состоит из аппаратуры подготовки воздуха и редуктора. Подготовка воздуха заключается в его очистке от влаги и механических примесей и внесении распыленного масла для смазки трущихся поверхностей в двигателе. Редуктор обеспечивает поддержание определенного давления воздуха на входе привода. Сжатый воздух па вход блока питания поступает обычно из общей пневмосети, в которую он подается от компрессора (компрессорной станции). В мобильных роботах воздух поступает от баллонов, где он находится под повышенным давлением.

При простейшем цикловом управлении начальная и конечная точки перемещений определяются передвижными регулируемыми механическими упорами, устанавливаемыми на подвижной части привода (на штоке пневмоцилиндра или выходном валу поворотного двигателя). Для обеспечения точности позиционирования и быстродействия устанавливают различные гидравлические или пружинные демпферы, обеспечивающие плавный выход в точку позиционирования. Иногда используют способ торможения противодавлением путем переключения подачи воздуха из одной полости двигателя в другую – встречно движению поршня или лопасти в зависимости от двигателя. Использование таких схем приводов обеспечивает значительно более высокую точность (по сравнению с позиционным управлением с обратной связью по положению) (погрешность менее 0,1 мм), высокое быстродействие и скорость перемещения до нескольких метров в секунду.

Применение пневматических приводов в робототехнике объясняется их дешевизной, простотой и соответственно надежностью. Пневматические приводы применяют только в роботах небольшой грузоподъемности – до 10кг, реже 20кг.

Принцип его действия очень прост. Компрессор является своеобразной «газовой пружиной». Он сжимает воздух и хранит накопленную потенциальную энергию до момента подачи его в пневматический двигатель. В качестве двигателей в пневматических приводах используются:

–силовые пневмоцилиндры с возвратно-поступательным движением штока;

–поворотные пневмомоторы;

–ротационные пневмомоторы.

Наиболее распространены пневмоцилиндры, которые могут соединяться со звеньями манипулятора без помощи передаточных механизмов, что упрощает механическую систему робота. При расширении сжатого воздуха эта потенциальная энергия перейдет в кинетическую энергию поршня со штоком, рис.3.5, который является простейшим пневмодвигателем.

Данный пневмоцилиндр позволяют обеспечить только две точки позиционирования, соответствующие втянутому и выдвинутому положению штока. Соответственные позиции занимают и связанные со штоком объекты. Для увеличения точек позиционирования применяют многопозиционные пневмоцилиндры.

Рис. 3.5. Принцип действия пневмоцилиндра:

а-одностороннего действия, б-двустороннего действия


Все достоинства и недостатки пневмопривода связаны со свойствами главного рабочего тела – сжатого воздуха. Его высокая экологичность обусловливает широкое применение именно пневмоприводов в пищевой, электронной, фармацевтической промышленности и в точном приборостроении.

К недостаткам следует отнести:

–трудность реализации следящего привода;

–невозможность точного позиционирования из-за высокой сжимаемости энергоносителя;

–значительные размеры исполнительных двигателей из-за ограниченного давления энергоносителя (не более 0,6 МПа);

–необходимость в специальных тормозных устройствах для остановки исполнительных органов в заданных точках с доступными ускорениями;