Это разожгло мое любопытство. Что же представляет собой эта фундаментальная загадка, которая все еще ожидает своего решения? Я никогда прежде не слышал о работах Пескина, но указанная им проблема произвела на меня сильное впечатление. Никто даже еще не пытался придумать математический аппарат, который описывал бы большую популяцию из «импульсно-связанных» осцилляторов, взаимодействие в которой осуществляется посредством кратковременных пульсирующих сигналов. Это было ощутимым пробелом в литературе по математической биологии – и к тому же весьма подозрительным пробелом, если принять во внимание широкую распространенность в природе именно такого способа взаимодействия между биологическими осцилляторами. Светлячки мерцают. Сверчки стрекочут. Нейроны посылают электрические сигналы. Все они используют внезапные импульсы для общения друг с другом. Тем не менее, теоретики уклонялись от изучения такой импульсной связи по причине отсутствия подходящего математического аппарата. Импульсы вызывают постоянные скачки переменных, однако у математики возникают большие проблемы при описании таких скачков – математика предпочитает иметь дело с процессами, которые изменяются плавно. Однако Пескину удалось каким-то образом проанализировать два осциллятора, которые периодически воздействуют друг на друга кратковременными импульсами. Каким образом это удалось ему? И что помешало ему перейти от системы с двумя идентичными осцилляторами к системам со многими осцилляторами?
В нашей библиотеке не оказалось экземпляра монографии Пескина, однако Пескин любезно согласился переслать мне соответствующие страницы из этой монографии. Его анализ показался мне весьма элегантным и понятным. Но я быстро понял, почему он ограничился системой лишь с двумя идентичными осцилляторами: несмотря на всю элегантность выполненного им анализа, его формулы оказались чересчур громоздкими. С тремя осцилляторами дело обстояло еще хуже, а система из произвольного количества (n) осцилляторов представлялась вообще неподъемной. Я не понимал, как можно распространить его модель на большое количество осцилляторов и обойти возникающие осложнения.
Чтобы получить более полное представление об этой проблеме, я попытался решить ее на компьютере двумя разными способами. Первый подход заключался в постепенном наращивании сложности системы: я пробовал, подражая стратегии Пескина, найти решение для системы с тремя осцилляторами, используя малые толчки и утечки и перекладывая на компьютер решение всех алгебраических вопросов. Формулы оказались просто устрашающими – некоторые из них простирались на несколько страниц, – но с помощью компьютера мне удалось сократить их до вполне приемлемого вида. Полученные мною результаты показали, что предположение Пескина является, по-видимому, правильным для системы с тремя осцилляторами. Однако эти результаты также говорили о необходимости найти какой-то другой способ решения данной проблемы. С ростом количества осцилляторов используемый мною математический аппарат оказывался неприемлемым.
Второй подход заключался в компьютерном моделировании. Попытаемся на данном этапе обойтись без формул и предоставим возможность компьютеру продвигать систему во времени шаг за шагом вперед, а затем посмотрим, что из этого получится. Компьютерное моделирование ни в коей мере не заменяет собою математический аппарат – оно никогда не позволит получить доказательство, – но если гипотеза Пескина ложна, то такой подход сэкономит массу времени, убедив меня в необходимости поиска других путей решения проблемы. Такой подход чрезвычайно ценен в математике. Когда вы пытаетесь доказать что-либо, желательно быть уверенным в том, что вы не пытаетесь доказать нечто изначально ложное. Такая уверенность придаст вам силы, которые понадобятся вам для поиска строгого доказательства.