Пояснения к коду:

Определение функции `are_anagrams`:

– Эта функция принимает две строки в качестве аргументов и возвращает булево значение, указывающее, являются ли они анаграммами.

Проверка длин строк:

– Сначала функция проверяет длины обеих строк. Если они не равны, то они не могут быть анаграммами, и функция возвращает `False`.

Преобразование строк в нижний регистр:

– Затем обе строки преобразуются в нижний регистр при помощи метода `lower()`. Это делается для упрощения сравнения, так как мы не хотим учитывать регистр при проверке на анаграмму.

Сортировка символов в строках:

– После этого символы в каждой строке сортируются в алфавитном порядке при помощи функции `sorted()`.

– Мы объединяем отсортированные символы обратно в строки при помощи метода `join()`. Это дает нам отсортированные версии строк.

Сравнение отсортированных строк:

– Отсортированные строки сравниваются. Если они равны, то строки являются анаграммами, и функция возвращает `True`. Если они не равны, функция возвращает `False`.

Пример использования:

– В конце кода показан пример использования функции, где две строки `"listen"` и `"silent"` проверяются на анаграмму.

– Выводится соответствующее сообщение в зависимости от результата проверки.

Таким образом, этот код эффективно проверяет строки на анаграммы, используя описанный выше алгоритм.


11. Задача о поиске наибольшего общего делителя (НОД): Написать программу, которая находит наибольший общий делитель двух целых чисел.

Для решения этой задачи мы можем использовать алгоритм Евклида, который базируется на принципе, что НОД двух чисел не изменится, если к большему числу присоединить или вычесть меньшее число. Мы будем применять этот алгоритм до тех пор, пока одно из чисел не станет равным нулю. В этот момент другое число и будет НОДом исходных чисел.

Пример кода на Python:

```python

def gcd(a, b):

while b:

a, b = b, a % b

return a

# Пример использования

num1 = 48

num2 = 18

result = gcd(num1, num2)

print(f"Наибольший общий делитель чисел {num1} и {num2}:", result)

```

В этом коде:

– Функция `gcd` принимает два целых числа `a` и `b`.

– В цикле `while` мы выполняем операцию над числами до тех пор, пока `b` не станет равным нулю.

– Внутри цикла `while` происходит обмен значениями `a` и `b`, где `a` принимает значение `b`, а `b` принимает значение остатка от деления `a` на `b`.

– Когда `b` становится равным нулю, цикл завершается, и `a` содержит наибольший общий делитель исходных чисел.

– Этот НОД возвращается функцией и выводится на экран.

Таким образом, данный код эффективно находит наибольший общий делитель двух целых чисел.


12. Задача о пространственном вращении: Реализовать программу для вращения точек в трехмерном пространстве относительно заданной оси и угла.

Для реализации программы вращения точек в трехмерном пространстве относительно заданной оси и угла, мы можем использовать следующий подход:

1. Представление точек: Каждая точка в трехмерном пространстве может быть представлена как тройка координат (x, y, z). Мы можем использовать этот формат для хранения и работы с точками.

2. Выбор оси вращения: Пользователь может задать ось вращения. Обычно используются оси X, Y и Z. Для простоты давайте начнем с оси Z.

3. Угол вращения: Пользователь также задает угол вращения в градусах или радианах, в зависимости от предпочтений.

4. Матрица поворота: Для выполнения вращения мы используем матрицу поворота, которая зависит от выбранной оси и угла вращения.

5. Применение вращения к точкам: Для каждой точки применяется матрица поворота, чтобы получить новые координаты точек после вращения.