Моя следующая книга «Расшифровка генома» (Cracking the Genome) была посвящена биологическому эквиваленту высадки человека на Луну – проекту «Геном человека», который привел к ожесточенной вражде между консорциумом под руководством Коллинза и захватившей власть группой с частным финансированием, возглавляемой Крейгом Вентером[16]. Командный центр его компании Celera Genomics с двумя огромными видеоэкранами больше походил на капитанский мостик звездолета «Энтерпрайз», вот только транслировали здесь не фотонные торпеды, а последовательности ДНК. Благодаря черновому варианту последовательности у нас появилась некоторая информация о человеческом организме, и мы могли приступить к систематическому поиску мутаций, которые лежат в основе доминантных и рецессивных (менделевских) заболеваний, а также начать понимать генетические причины более распространенных болезней, таких как астма и депрессия.
Едва лишь завершился проект «Геном человека», как я услышал, что Вентер призывает к использованию новой технологии секвенирования для быстрого чтения последовательности ДНК, которая могла бы дать информацию о всем геноме человека всего за $1000. Поскольку составление первого черновика генома человека стоило $2 млрд, это было похоже на научную фантастику. Но началось это в один воскресный день в феврале 2005 г., когда Клайв Браун написал своим коллегам из британской биотехнологической компании Solexa письмо с заголовком «МЫ СДЕЛАЛИ ЭТО!!!!». Используя новую технологию, изобретенную двумя профессорами химии из Кембриджского университета[17], команда Брауна секвенировала геном самого маленького известного вируса ФХ174. В следующем году другая компания, Illumina, приобрела Solexa и двинулась к достижению мифического порога в $1000, что заняло десять лет[18]. К тому времени мы уже знали о первых случаях, когда секвенирование генома спасло жизни, положив конец диагностическим одиссеям таких пациентов с загадочными генетическими заболеваниями, как Николас Волкер. Резкое снижение стоимости чтения последовательности ДНК сопровождалось значительным увеличением его скорости. Например, Стивен Кингсмор из детской больницы Рэди в Сан-Диего недавно установил мировой рекорд и был занесен в Книгу рекордов Гиннесса, секвенировав и обработав полный геном новорожденного всего за двадцать часов[19].
Каждая из этих историй рассказывает об огромном скачке в генетике, которому способствовали успехи в области чтения последовательности ДНК. С новыми технологиями секвенирования, предлагающими новые невероятные возможности для скоростного считывания ДНК[20][21], мы находимся на пути к получению данных о геноме за $100. Особого внимания заслуживает нанопоровое секвенирование, осуществляемое с помощью портативного устройства не больше смартфона, которое использовалось на Международной космической станции.
Наряду с успехами в чтении ДНК мы также наблюдаем существенный прогресс в написании ДНК. Чёрч и другие исследователи закодировали книги и фильмы в последовательность ДНК в цифровом формате[22] и создали дрожжевую клетку, объединив естественный набор из шестнадцати хромосом в единую мозаичную хромосому[23]. Cинтетическую биологию ждет впечатляющее будущее: проектирование цепей ДНК и настройка организмов для множества применений – от биоинженерного парфюма и нефтехимии до нового поколения антибиотиков и противомалярийных препаратов. Ученые даже расширили генетический алфавит, изначально состоящий из четырех букв, создав новые химические строительные блоки, которые могут заменить те, что уже входят в состав двойной спирали. Это закладывает основу для разработки синтетических белков, содержащих новые структурные элементы