«Когда вы видите что-то необычное, у вас нет другого выхода, кроме как исследовать это. Я подумал, что над этим хорошо было бы продолжить работу», – говорит он, пока мы продолжаем прогулку по солончакам. Он догадывался, что загадочные повторы могут быть как-то связаны с адаптацией к концентрации соли, возможно за счет изменения их конфигурации, а следовательно, активности генов, при регистрации колебаний осмотического давления клетки. «В то время суперспирализация [ДНК] была ответом на все вопросы, связанные с регуляцией экспрессии генов!» Это была хорошая гипотеза, но неверная[92].
Работая в университетской библиотеке в неурочное время, Мохика в конце концов обнаружил статью японских ученых за 1987 г. В ней Ацуо Наката и Йосизуми Исино[93] из Университета Осаки описали аналогичный повторяющийся мотив в геноме E. coli. Секвенируя исследуемый ген, японская группа заметила необычную соседнюю последовательность с характерными повторами, похожими на круги на полях, вырезанные на поверхности ДНК. Этот участок состоял из серии (кластера) коротких повторов палиндромной последовательности (читающихся одинаково в прямом и обратном направлении). Повторы, состоящие из двадцати девяти букв, были отделены друг от друга отрезком уникальной последовательности из тридцати двух оснований (спейсерами). Однако, поскольку никто до этого не видел ничего подобного и ничто не говорило об их биологической функции, исследователи не придали этому значения. Команда, как положено, описала и опубликовала свои наблюдения, которые в то время не привлекли к себе внимания[94].
Два года спустя[95] Мохика описал короткую последовательность, повторяющуюся сотни раз в тандемном повторе, охватывающем более 1000 оснований. Между каждой парой таких повторов была уникальная последовательность ДНК с неизвестной функцией. Руководитель Мохики предложил назвать эти повторы, которые также наблюдались у другого экстремофила – архей, любящих вулканы, TREP (от англ. tandem repeats – «тандемные повторы»). Несомненно, должна быть причина, по которой до 2 % драгоценной, компактной ДНК прокариот выделено под эти странные повторы. «Микроорганизмы не могут позволить себе такую роскошь, – думал Мохика. – Они должны выполнять важную функцию»[96].
Другие ученые тоже сталкивались с такими повторами. Немецкий микробиолог Бернд Мазеполь ломал голову над фрагментом ДНК с тринадцатью повторами, найденным в цианобактериях, который он назвал LTRR, что означает «длинное тандемно повторяющееся повторение» (от англ. long tandemly repeated repetitive). Однако, сосредоточившись на этих участках ДНК, Мазеполь не обратил внимания на уникальные последовательности, расположенные между ними[97]. Другая команда также была близка к разгадке тайны повторов ДНК. В 2002 г. Евгений Кунин, российский специалист по вычислительной биологии из Национального центра биотехнологической информации при Национальном институте здравоохранения США, и его коллега Кира Макарова описали серию бактериальных генов, которые, как они подозревали, входят в систему репарации ДНК[98]. Вот только они не поняли, что эти гены располагались рядом с участком CRISPR и, как мы вскоре увидим, играли важную роль в работе CRISPR и в редактировании генов.
После нескольких лет работы в Оксфордском университете Мохика вернулся в Аликанте в 1997 г., чтобы собрать собственную научную группу. Получив небольшое финансирование, Мохика попытался провести несколько недорогих экспериментов, «хотя и понятия не имел о биоинформатике». Вопрос, который не давал покоя, касался происхождения спейсерной ДНК – последовательностей, вкрапленных между повторами. «Искать по базам данных и ждать, когда хоть что-нибудь найдется, несложно, но мы ничего не получали – до 2003 г.». К тому времени базы данных последовательностей ДНК были переполнены геномами бактерий и архей, многие из которых содержали версии этих повторов.