Джон Дальтон (1766 – 1844)
Первые экспериментальные подтверждения атомистической гипотезы были получены через более чем два тысячелетия в 1803 году Джоном Дальтоном (1766—1844) в опытах по поглощению газов в жидкостях. В дальнейших попытках развития атомистической гипотезы их всех фантазий и измышлений Демокрита осталась только сама базовая идея атомов, как мельчайших неделимых частиц вещества, а все остальные предположения оказались ложными. Существенный прогресс в понимании структуры атома был достигнут в опытах Эрнеста Резерфорда (1871—1937) в 1911 году в экспериментах по рассеянию альфа-частиц на металлической фольге. Эти опыты показали, что атом состоит из положительно заряженного массивного ядра и вращающихся вокруг него отрицательно заряженных электронов, подобно вращению планет вокруг Солнца. Суммарный заряд электронов равен заряду ядра, поэтому атом снаружи представляется электрически нейтральным комплексом. Ядро атомов в сто тысяч раз меньше размера атома, определяемого диаметром орбиты самого удалённого от ядра электрона. Это означает, что в объёме атома только 10>—15 – одна триллиардная часть занята веществом, а всё остальное занимает пустота, называемая вакуумом. В своих публикациях Резерфорд указывал, что планетарная модель не свободна от недостатков, главным из которых является то, что она нестабильна. В самом деле, из простейших законов ньютоновской физики следует, что любое тело массой m, которое движется по криволинейной траектории со скоростью v, совершает работу, тратя при этом свою кинетическую энергию, подсчитываемую по формуле E = mv>2/2. Криволинейность траектории электрона с зарядом е обусловлена его притяжением к ядру с противоположным по знаку зарядом Z по закону Кулона с силой F = eZ/ (4πε>0r>2), где r – радиус орбиты электрона, если считать её приблизительно круговой, ε>0 – мировая константа, диэлектрическая проницаемость вакуума, а π – отношение длины окружности к её диаметру. Кулоновская сила притяжения уравновешивается центробежной силой, равной F=mv>2/r. Из равенства сил можно вычислить скорость электрона а затем и его энергию. Поскольку модуль скорости электрона v>2 = eZ/ (4πε>0mr) на круговой орбите постоянен, можно вычислить, какую часть энергии ΔΕ он тратит за один оборот, совершая работу W = FS, где S = 2πr – длина орбиты. Разделив начальную энергию E на ΔΕ, получим число оборотов n, за которое электрон, растратив начальную энергию, упадёт на ядро. На это потребуется время τ = 2πrn/v. Элементарные расчёты показывают, что время падения всех электронов на ядро составляет меньше одной микросекунды. Энергию же электрон может отдавать лишь испуская фотоны, поскольку его взаимодействие с ядром носит электромагнитный характер. Таким образом, если в начальный момент все электроны были на своих орбитах, то в течение микросекунды во Вселенной произошла сильная вспышка, и мир стал мёртвым, поскольку химические реакции, с помощью которых образуются молекулы всех веществ в природе, обусловлены взпимодействием внешних электронных оболочек атомов. Раз этого не происходит, единственное объяснение состоит в том, что составляющие элементы атома управляются совсем иными законами, отличными от ньютоновской физики. Какими именно, мы расскажем несколько позже.
В 1928 году при решении уравнения движения релятивистского электрона Полем Дираком было предсказано существование античастиц – частиц с отрицательной энергией. Для заряженных частиц, например электрона, это свойство означает существование такой же частицы, но с зарядом противоположного знака – позитрона. В дальнейшем оказалось, что античастицы имеются у всех остальных частиц, но только для «истинно нейтральных»» (фотон, гравитон, нейтральный пи-мезон…) античастица по своим свойствам полностью совпадает со своим двойником-частицей. Впервые античастица для мю-мезонов были обнаружены в 1936 году, для пи-мезонов – в 1947 году.