Объём данных по спектрам атомов был столь велик, что неоднократно предпринимались попытки подобрать простые алгебраические формулы для описания частот (или длин волн) для спектра каждого атома. Достаточно быстро были найдены такие формулы, которые позволяли классифицировать линии, объядиняя их в серии, описываемые изменением целого числа, представляющего каждую серию. Так появились серии Бальмера, Лаймана, Пашена, Брэккета, Пфунда, Хэмфри, Хансена-Стронга. Однако, объяснить причины формирования линейчатых спектров не удавалось. Гениальным провидцем, который догадался, что для объяснения столь странного поведения атомов следует привлечь новые принципы, оказался датский физик Нильс Бор (1885—1962). Подсказкой для него явились работы Макса Планка по излучению «абсолютно черного» тела и Альберта Эйнштейна по теории фотоэффекта. Из этих работ следовало, что при определённых условиях обмен энергией осуществляется элементарными порциями энергии, которые Планк назвал квантами. Величина кванта пропорциональна частоте излучения, а коэффициент пропорциональности был назван постоянной Планка ħ. Эти работы позволили определить закономерности, наблюдаемые в экспериментах, но не давали объяснения причин, по которым в природе существуют не только мельчайшие частицы, называемые атомами, но и мальчайшие, неделимые порции энергии – кванты.


Отец квантовой механики Нильс Бор (1895 – 1962)


В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул», опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента: общие утверждения (постулаты) о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома, представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия (например, квантование углового момента электрона).

В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой: …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.


Отец матричной модели Вернер Гейзенберг (1901—1976)