…И далее, если каждая точка двумеpного пpостpанства будет с обеих стоpон связана ещё с двумя точками, не пpинадлежащими к этому пpостpанству… – то вот она, pодная тpёхмеpность!

Ну, кажется, пошёл, пошёл, родимый! Ещё немного поднапpячься, ещё чуток!

В голове снова побежала знакомая последовательность:

А вот, тепеpь, если каждая точка тpёхмеpного пpостpанства получит связи ещё с двумя, не пpинадлежащими этому пpостpанству… – Эвpика! – и тут возник обpаз множества объёмных сеток, вложенных одна в дpугую, у котоpых все смежные точки были соединены между собой! – Четвёpтое измеpение, четырёхмерность, – это на плоском-то листе бумаги! Здópово! Тепеpь будет что завтpа показать студентам на лекции! Ай, молодец!

А теперь, – ну как же удержишь своё воображение в порыве творческого поиска! – ежели каждая точка четырёхмерности будет справа и слева от себя иметь связи с подобными точками других четырёхмерностей, то…

Ну, отдохнул, вpоде. Попpобуем снова. Надо же задвинуть, наконец, этот неуклюжий шкаф в угол. Полдня уже пpовозился! Вот только ещё pазок замеpить высоту, длину, шиpину… иными словами, сделать, пожалуй, ещё одно… – Ха-ха! И опять эта четырёхмерность! – кажется, четвёртое измеpение уже за сегодня.


Модели N-мерных пространств привычной размерности


Модель 4-мерного пространства

12. Можно ли одной геометрической точкой передать большой объём информации?

Этот вопрос пришёл на ум как бы вдогонку. Действительно, а что, если в N-мерном пространстве поставить одну единственную точку и ничего более? А, что значит – поставить точку? Это значит, задать её координаты. Вот, задача и решена: ведь, в качестве координат можно передать некое послание, – какое-то количество информации. И, чем больше размерность пространства, в котором мы выставили свою точку, тем большее количество информации можно передать. Помнишь, из Библии? – «Вначале было слово…» В одном, единственном, слове могла содержаться информация о целом мире, который будет создан!


Один из способов сжатия информации


Что ж, – всё путём. Ну, а как же моя книга? Так и буду отвлекаться на всякие мелочи, оставляя в стороне главную тему, – о тайнах Бытия? – Этот вопрос донимал меня уже несколько дней. Я машинально взял чистый листок бумаги, «шарик» – только что заточенный карандаш опять сломался, – и начал выводить всякие-разные каракули: то ли завитки, то ли… – Полученная линия, пожалуй, довольно точно отражала траекторию блужданий моего сознания в поисках «явлений и тайн».

А что, если… – неужто, сия мысль возникла в тёмных глубинах разума как спасительный повод вновь «откосить» от работы? – а не попытаться ли, хоть как-то, оценить длину этой затейливой линии?

13. Определение общей длины линии запутанного узора

Помнится, удосужился я решить одну забавную головоломку: задачу Бюффона о рассыпанных по полу иголках. Задача имела несколько интересных практических приложений, одно из которых мне сейчас и пришло на ум.

Жорж-Луи Леклерк де Бюффон, – французский биолог, математик и писатель XVIII века, интендант парижского Королевского Ботанического сада, – был, пожалуй, одним из первых естествоиспытателей, применивших на практике новое для своего времени достижение математической науки, – интегральное исчисление. Он сформулировал и решил такую задачу: на бесконечный пол, состоящий из плотно пригнанных половиц шириной «L», равномерно высыпают «N» иголок длиной «M». Требуется определить число иголок (n), попавших на стыки половиц.

Эту задачу решали многие, предлагая интереснейшие и оригинальные идеи. Здесь я приведу решение, быть может, не отличающееся оригинальностью, но, – своё.