11. Увеличивались ли массы планет за счёт гравитации во время сжатия Облака Солнца, как утверждают некоторые астрофизики?

Полагаем, что нет. И вот по каким причинам. Во-первых, при твердотельном вращении уплотнённое вещество дрейфовало от периферии к центру под действием аномального закона Ньютона (чем дальше частица – тем сильнее притяжение). Но вне Облака уплотнённых частиц не было и, кроме того, там этот закон не действовал: не было вращения. Во-вторых, во второй фазе сжатия (дифференциального вращения) уплотнённое вещество дрейфовало на периферию, то есть Облако, наоборот, теряло свою массу, правда незначительную, в виде Тороида.

Теперь перейдём к изложению своей гипотезы Рождения планетарных систем на примере Солечной системы. Два слова о межзвёздной среде, в которой зарождаются галактические звёзды сегодня. Средняя плотность газа в спиральных галактиках составляет 10>-24 г/куб. см. Это один атом водорода в одном кубическом сантиметре. Звёзды зарождаются при большей плотности (в среднем более 10 000 частиц в куб. см). Температура газа – минус 170 градусов (у пылинок – минус 240 градусов). Этот газ состоит примерно из 75 % водорода, 24 % гелия и около 1 % пыли (из тяжёлых элементов).

Два слова о видах вращения газового облака. В Космосе существует три вида вращения газового облака: твердотельное (с постоянным угловым ускорением, то есть периодом вращения), дифференциальное и кеплерово.

а) Окружная скорость твердотельного вращения растёт с увеличением радиуса и прямо пропорциональна ему при постоянной плотности:

Vокр = Rвр / (4/3 п G* q)>1/2;

б) Окружная скорость дифференциального вращения уменьшается с ростом радиуса вращения в зависимости от изменения плотности газа:

Vокрj < Rврj / (4/3 п G*qj); при qj = var.

в) Окружная скорость кеплерового вращения снижается с ростом радиуса вращения при снижении плотности газа:

Vокр =Vо* (Rо / Rj)>1/2; при qj = var.

Для формирования Облака, способного родить звезду, от внешней среды нужен был лишь пороговый момент импульса, а внешняя «вовлечённая масса» поможет запустить механизм автосжатия Облака достаточной массы. Далее Облако удивительным образом выполнило семь в определённой последовательности преобразований, в результате которых и появилась звезда. Что бы оценить уникальность этих событий и разгадать тайну вращения газового Облака звезды, надо рассмотреть что там происходило с самого начала. Почему именно твердотельное вращение? Природа экономна и рациональна. Потому, что при нём на раскрутку газового Облака до конкретной скорости требуется энергии примерно в два раза меньше, чем при кеплеровом вращении. Это легко показать (средняя скорость вращения Облака наименьшая). Виной тому – дрейф уплотнённых частиц в газовом Облаке на орбиты с меньшей орбитальной скоростью, согласно выражению:

Wорб = m* Vорб>2/ Rорб.

Эта формула отражает качественную сторону дрейфа – его направление, а количественная зависит от плотности тела (планеты, кометы и др.) и его радиуса. Мы назвали её удельная плотность:Wуд = M / Sм = 4/3 п* q* R. Поскольку при дифференциальном вращении орбитальная скорость уменьшается к периферии, то и все тела плотнее газа дрейфуют на периферию, то есть разносят частицы прочь от центра, а не наоборот. Поэтому дифференциальное вращение не способно сформировать ядро для устойчивости будущей звезды. В то же время этому его свойству мы обязаны тем, что не всё твёрдое вещество было поглощено Солнцем, а осталось ещё около 40–60 Мз (2 % от исходной массы пыли), в том числе семейство комет и планет в Тороиде с Солнечной системой и нашей Землёй.