Seaborn: Построенная на Matplotlib, Seaborn предоставляет высокоуровневый интерфейс для создания красочных статистических графиков. Особенно полезна для визуализации данных в рамках анализа данных.

Plotly: Библиотека, которая предоставляет возможности для создания интерактивных графиков и визуализации данных. Поддерживает широкий спектр видов графиков.

Библиотеки для обработки данных

Pandas: Эффективная библиотека для работы с данными в табличной форме. Предоставляет высокоуровневые структуры данных, такие как DataFrame, и множество функций для манипуляции и анализа данных

NumPy: Основная библиотека для выполнения математических операций с многомерными массивами и матрицами. Широко используется в научных вычислениях и обработке данных.

SciPy: Построенная на NumPy, SciPy расширяет его функциональность, предоставляя дополнительные инструменты для оптимизации, статистики, интеграции и других задач.

Библиотеки для машинного обучения и искусственного интеллекта

Scikit-learn: Мощная библиотека для машинного обучения, содержащая инструменты для классификации, регрессии, кластеризации и других задач. Обладает простым и единообразным интерфейсом.

TensorFlow: Одна из ведущих библиотек для создания и обучения моделей глубокого обучения. Поддерживает широкий спектр архитектур нейронных сетей.

PyTorch: Библиотека глубокого обучения, предоставляющая динамические вычислительные графы. Используется для исследовательских задач и разработки новых алгоритмов.

Библиотеки для веб-разработки

Django: Фреймворк для быстрой и эффективной разработки веб-приложений на Python. Обеспечивает множество готовых компонентов.

Flask: Легкий фреймворк для создания веб-приложений. Предоставляет минимальный набор инструментов, оставляя большую свободу в выборе структуры приложения.

Библиотеки для научных вычислений

SymPy: Библиотека для символьных вычислений, позволяющая работать с математическими символами в Python.

Astropy: Библиотека для астрономических вычислений, предоставляющая структуры данных и функции для работы с астрономическими данными.

Эти категории библиотек представляют лишь малую часть обширного мира Python-библиотек. В зависимости от конкретных требований проекта, разработчики могут выбирать библиотеки из разных областей, чтобы эффективно решать задачи. В дальнейшем мы рассмотрим их более подробно на примерах и задачах.

1.6. Особенности использования библиотек в Python-проектах

Использование библиотек в Python-проектах может включать в себя ряд особенностей, связанных с взаимодействием с различными версиями Python и разрешением конфликтов и зависимостей между библиотеками.

Взаимодействие с различными версиями Python

Одним из значительных преимуществ Python является его активное сообщество и поддержка новых версий. Однако при разработке проектов возникает необходимость управления совместимостью библиотек с разными версиями языка.

Виртуальные окружения: Для изоляции проекта от глобальных установок и обеспечения совместимости с различными версиями Python, часто используются виртуальные окружения. Библиотека `venv` или инструменты, такие как `virtualenv` и `conda`, позволяют создавать изолированные окружения для каждого проекта, где можно устанавливать необходимые версии библиотек.

Обновление кода: Регулярное обновление кода проекта и используемых библиотек позволяет поддерживать совместимость с новыми версиями Python и получать преимущества от новых функциональных возможностей и улучшений производительности.

Разрешение конфликтов и зависимостей между библиотеками

Файл зависимостей (requirements.txt): В Python-проектах часто используется файл `requirements.txt`, где перечислены все библиотеки и их версии, необходимые для работы проекта. Это позволяет легко воссоздавать окружение на других машинах.