В качестве примера модели физической системы рассмотрим автоматизированную производственную систему для производства какого-то вида физической продукции. Модель, например, может, зафиксировать наличие физического производственного оборудования в виде рабочих ячеек и буферов. Обработка сырья и полуфабрикатов в процессе производства может быть описана при помощи функций распределения случайной величины, например Гаусса или Пуассона. Подобные модели, с одной стороны, применяются для того, чтобы лучше разобраться с сутью происходящих процессов, а с другой, чтобы убедиться в том, что модель производства отражает реальность производственного процесса.

Модели абстрактных систем могут предусматривать аналогичный анализ, когда гипотеза, касающаяся способности к обработке, может быть использована для понимания ряда функций и/или возможностей и связей между ними. В том, что касается скорости обработки, математические соотношения так же могут быть использованы для описания взаимосвязей; в результате абстрактная система может быть в конце концов преобразована в физическую систему.

Модели систем человеческой деятельности могут быть построены для понимания реальных или типовых ситуаций и/или реагирующих систем, связанных с какой-то проблемой или благоприятной возможностью. Модели человеческой деятельности, состоящие из функций и/или возможностей и связей между ними, также могут быть использованы для того, чтобы зафиксировать совокупность процессов и/или процедур, которые должны быть выполнены людьми.

Поскольку модели не являются точной копией оригинала и представляют собой абстрактную реальность, можно сделать вывод о том, что все модели являются неверными; однако некоторые из них являются полезными [Box and Draper, 1987]. Боардмэн и Сосер [Boardman and Sauser, 2008] указывают на следующие полезные выводы, касающиеся моделей. Не следует создавать модель, если мы не знаем:

• на что мы смотрим;

• почему мы на это смотрим;

• откуда (с какой точки зрения) мы на это смотрим, и

• что, по нашему мнению, мы сможем увидеть лучше, если у нас будет модель.

Последний важный момент в создании модели, по нашему мнению, это как.

Независимо от того, какая модель – количественная или качественная – создается, самым важным с точки зрения системного мышления является хорошо продуманный и конкретный процесс моделирования. Как уже упоминалось, по утверждению Питера Сенге процесс моделирования включает скорее формирование полного, целостного представления и возможности определить характер изменений, чем установление мгновенного, статического видения ситуации. С другой стороны, как отмечает Питер Чекланд, модели предоставляют основу для изучения системных ситуаций.

Парадокс

Системные ситуации часто являются парадоксальными и содержат противоречия (явления, которые можно рассматривать и как истинные, и как ложные). Классический пример: это утверждение – ложь. Если это утверждение является истинным, тогда это ложь; если оно ложное, как оно может быть истинным. Рассматривая системные ситуации, системный мыслитель должен осознавать возможность парадоксальных ситуаций. Касаясь системного мышления и парадоксов, Боардмэн и Сосер утверждают следующее.

«Парадокс – это очевидное противоречие. Тем не менее, предметы не всегда таковы, какими они кажутся. Парадокс можно объяснить, но только пытаясь обрести мудрость свыше; для системного человека это означает взгляд вверх и наружу, а не только вниз и внутрь. Парадоксальное мышление является системным мышлением в его лучшем проявлении».

Парадоксы, содержащие утверждения, претендующие на то, чтобы быть истинными, и в то же время противоречащие друг другу, приводят к возникновению напряжения, принять которое заинтересованным сторонам порой бывает трудно. В то же время рассмотрение этих конфликтов при помощи моделей, стимулирующих новое осмысление, может способствовать изменению представлений, что приводит к более глубокому пониманию. Давайте рассмотрим несколько примеров.