удалось обнаружить гравитационные волны (см. главу 4), перемещение искажений пространства-времени, которые Эйнштейн предсказал сто лет тому назад.

Был ли уникален мозг Эйнштейна?

Когда Эйнштейн умер, патологоанатом, горя желанием открыть источник необычайного интеллекта Эйнштейна, извлек его мозг, анатомировал и сфотографировал его. Мозг ученого с самого начала вызвал некоторое разочарование: он был слегка меньше средних размеров. Однако за последние десятилетия изображения мозга Эйнштейна дали исследователям пищу для новых идей. Исследование 1999 года показало, что теменная доля головного мозга Эйнштейна – часть мозга, ответственная за математическое и пространственное мышление – оказалась на 15 % шире, чем у среднего мозга. Национальным музеем здоровья и медицины в Чикаго даже было разработано специальное приложение Einstein Brain Atlas (Атлас мозга Эйнштейна). В приложении представлены более 350 оцифрованных слайдов, которые помогут исследователям «углубиться» в серое вещество великого человека. Согласно статье, опубликованной в 2012 году в неврологическом журнале Brain, блестящий интеллект Эйнштейна может объясняться особенностями префронтальной коры его мозга, которая ответственна за речь, формирование представлений о будущих событиях и предугадывание их последствий. По сравнению с обычным мозгом, префронтальная кора мозга Эйнштейна значительно увеличена. Исследователи также заметили большой выступ на двигательной коре головного мозга, посчитав его следствием того, что Эйнштейн с детства начал играть на скрипке.

Некоторые срезы мозга пропали без вести. Не исключено, что когда-нибудь они найдутся на чердаках ваших дедушек.

Пространственно-временная хроника

1905

Эйнштейн излагает свою специальную теорию относительности в статье «Об электродинамике движущихся тел».


1915

Эйнштейн представляет в Прусской академии наук в Берлине свои уравнения гравитационного поля в общей теории относительности.


1916

Эйнштейн использует общую теорию относительности для предсказания существования гравитационных волн, складок в пространстве-времени, возникающих в результате ускорения массивных тел.


1917

Эйнштейн вводит дополнительный член в свои уравнения, космологическую постоянную, чтобы уравновесить силы притяжения и получить статичную Вселенную, которая бы не расширялась и не сжималась.


1919

Артур Эддингтон наблюдает отклонения световых лучей под действием притяжения Солнца во время солнечного затмения на острове Принсипи – эффект гравитационной линзы, предсказанный Эйнштейном.


1921

Эйнштейн получает Нобелевскую премию за «заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».


1922

Александр Фридман находит решение уравнений Эйнштейна, которое описывает равномерно расширяющуюся Вселенную. Пять лет спустя Жорж Леметр независимо от него получает те же результаты.


1929

Эдвин Хаббл и др. показывают, что далекие галактики удаляются от нас – первый намек на расширяющуюся после Большого взрыва Вселенную. Эйнштейн отказывается от своей космологической постоянной.


1948

Теоретики предсказывают, что если Вселенная расширяется из горячего и плотного состояния после Большого взрыва, то она должна оставлять после себя остаточное свечение: космическое микроволновое фоновое излучение.


1964

Радиоантенны улавливают космическое микроволновое фоновое излучение в виде шума. Наступает «золотой век» теории относительности.


1972

Рентгеновское излучение от источника X-1 в созвездии Лебедя предоставляет первое доказательство коллапса звезды и превращения ее в черную дыру звездной массы.