К концу 1970-х дилемма заключенного стала олицетворять собой все, что было не так с выпестованной экономистами личной выгодой. Если игра доказывала: с точки зрения индивида, единственным рациональным поступком был эгоистичный, значит, главное допущение являлось неадекватным. Поскольку люди эгоистичны не всегда, они должны руководствоваться не личной выгодой, а общим благом. Поскольку же вся классическая экономика построена на личной выгоде, выходит, все 200 лет ее существования экономисты лаяли не на то дерево.

Теория игр родилась в 1944 году в плодовитом, но «бесчеловечном» мозгу венгерского гения Джона фон Неймана[28], позже став отраслью математики, в особенности отвечающей потребностям «мрачной науки» экономики. Объяснение просто: эта теория касается той области, где правильность поступков одних определяется действиями других. Что бы ни творилось на свете, имеется всего одно правильное решение примера «2+2». Но вот намерение купить или продать ценные бумаги, например, целиком и полностью зависит от обстоятельств – в частности, от решений других людей. Даже в этом случае, однако, может существовать безопасная линия поведения, стратегия, работающая вне зависимости от действий окружающих. Найти ее в реальной ситуации – такой, как принятие решения об инвестиции – практически невозможно. Хотя это и не означает, что идеальной стратегии вообще не существует. Смысл теории игр в том, чтобы найти универсальный рецепт в упрощенных версиях реального мира. Это назвали «равновесием Нэша» – в честь принстонского математика Джона Нэша[29], выдвинувшего эту теорию в 1951 году, а в 1994-м, после долгой борьбы с шизофренией, получившего за нее Нобелевскую премию. Вот ее определение: равновесие возникает тогда, когда стратегия каждого игрока является оптимальной реакцией на стратегии, принятые другими игроками, и отклоняться от выбранной стратегии не выгодно никому.

В качестве примера рассмотрим игру, придуманную Питером Хаммерштайном и Рейнхардом Селтеном. Есть два человека, Конрад и Нико; их задача – поделить деньги друг с другом. Конрад делает первый ход и должен решить, как они разделят деньги: пополам (справедливо) или нет (несправедливо). Нико делает второй ход и должен решить, сколько денег они поделят: много или мало. Если Конрад выбирает «несправедливо», он получает в девять раз больше, чем Нико. Если Нико выбирает «много», каждый получает в десять раз больше, чем получил бы при выборе «мало». Конрад может потребовать в девять раз больше, чем Нико, и последний ничего не может с этим поделать: выбирая «мало», он наказывает не только оппонента, но и себя. Следовательно, несчастный Нико не может даже пригрозить наказать Конрада, ибо все его угрозы выбрать «мало» неубедительны. Равновесие Нэша: один выбирает «несправедливо», а другой – «много». Это не идеальный исход для Нико, но это лучшее, что можно сделать в данной ситуации>56.

Равновесие возникает тогда, когда стратегия каждого игрока является оптимальной реакцией на стратегии, принятые другими игроками, и отклоняться от выбранной стратегии не выгодно никому.

Заметьте, в равновесии Нэша наилучший результат достигается не всегда. Далеко не всегда. Часто оно устанавливается между двумя стратегиями, приводящими к неудаче одного или обоих партнеров, однако ни один из них не сумеет добиться лучших результатов, даже если поступит иначе. Дилемма заключенного – как раз такая игра. В случае, когда партнеры играют в игру впервые и только один раз, существует только одно равновесие Нэша: оба партнера предают – то есть отказываются от сотрудничества.