First, we will very briefly express a subjective opinion about the state of modern economic science, so that the reader could understand the logic of the research undertaken in this work and its main objectives, and, ultimately, the value of the results obtained. We will formulate our opinion in the form of two statements.

Statement one. In our view, all old and new, widely known economic theories, including neoclassical economics, Marxist and Keynesian theories, the Austrian economic school and other currents of economic thought are, in fact, either heuristic or, at best, empirical theories with neither clear unambiguous experimental results, nor rigorous mathematical theories that allow ab initio calculations on the dynamics of specific real market systems whose results coincide with the corresponding experimental results of these markets work with a reliable level of accuracy. Moreover, proponents of even the most logically advanced empirical economic theory, namely the Austrian economic school, argue [Von Mises, 2005; De Soto, 2009] that neither experimentation nor even the use of the mathematical apparatus to describe economic phenomena and market processes is possible in principle. On this basis they categorically denounce all attempts to use the achievements of physics and mathematics for development of the quantitative economic theory. In our opinion, the current situation in economics is not absolute; it only repeats the similar situation that existed in physics 300–600 years ago before the works of Nicholas Copernicus, Isaac Newton, Galileo Galilei and other physicists and mathematicians of the new era in physics. What is the main reason for economics to lag behind physics for so long in this respect? John von Neumann and Oskar Morgenstern provide an excellent answer to this question in the quote from their book given in the epigraph. The reason was hidden in an objective factor, namely in the very absence of the possibility to rely on experiment in economics, at least in the form of systematic long-term observations of the cyclic motion of the planets of the solar system, as was done in physics. At present such an opportunity is provided to us by electronic exchanges with their digital platforms and big data that can be used, in general, for the verification and development of economic theories.

Returning to the beginning of the discussion, let us note that the probabilistic economics we developed was also empirical or heuristic in content, based on our twenty-five years of entrepreneurial experience in the investment business. So, in this respect it is no better than any other economic theory; thus, it is virtually unknown in the scientific economic community. But there is an important nuance. Unlike all other theories, probabilistic economics has a developed mathematical body suitable for calculation of any market economic systems. The results of these calculations can be compared with known experimental data, for example for exchanges. In this regard, in this study we have set a goal to find experimental evidence that the very foundations of probabilistic economics are valid, in other words, to verify the initial premises and assumptions of the theory by means of experiments. Moreover, this should be done the way it is done in physics, namely by continuously comparing the results of ab initio calculations of the dynamics of exchange systems and the results of experiment, as well as by subsequently confirming or rejecting the assumptions made. Only this approach, or method of investigation, which we call the physical method in economic science and which is universally recognized in the natural sciences, will make it possible to develop an adequate economic theory capable of giving a sufficiently accurate quantitative description of how real markets of any complexity work, as well as of making sufficiently reliable forecasts of markets and economies development, at least in the short term. In other words, we aim thereby to establish sufficiently accurate experimental justifications for economic science.