. Naturally in construction, we will use only first four principles, since only they have analogues in classical mechanics.

As we know, market agents are the buyers and sellers of goods and commodities, and as such are the major players in the market economy. They strongly interact with each other and with the institutions and the market’s external environment including other market economies. They continuously make decisions concerning the prices and quantities of good, and buy or sell those in the market. All the market agents’ actions govern the outcome of the market, which is the essence of the agent principle. We believe the agents to behave to a certain extent in a deterministic way, striving to achieve their definite market goals. This means that the behavior of market agents is, in turn, governed by the strict the economic laws in the market. The fact that these laws have until now been of a descriptive nature in classical economic theory, and they have not yet been expressed in a precise mathematic language, is not of key importance in this case. What is really important is that we believe all the market agents to act according to the economic laws of social cooperation that can be approximately described with the help of the market-based trade maximization principle.

Every market agent acts in the market in accordance with the rule of obtaining maximum profit, benefit, or some other criterion of optimality. In this respect, we believe the many-agent market economic systems to resemble the physical many-particle systems where all the particles interact and move in physical space. This is also in accordance with the same system-based maximization principle, such as the least action principle in classical mechanics which is applied to the whole physical system under study. The analogous situation exists in quantum mechanics (see below in the Part F).

The main drive of our research was to take the opportunity to create dynamic physical models for market economic systems. We construct these physical economic models by analogy with physics, or more precisely by analogy with theoretical models of the physical systems, consisting of formal interacting particles in formal external fields or external environments [1]. Let us stress that these particles are fictitious; they do not really exist in nature. Therefore, the physical systems mentioned above are also fictitious and they do not exist in nature either. They are indeed only imagined constructions and served simply as patterns for constructing the physical economic models. Thus, these physical economic models consist of the economic subsystem, or simply the economy or the market. It contains a certain number of buyers and sellers, as well as its institutional and external environment with certain interactions between market agents, and between the market agents and the market institutional and external environment. Moreover, according to the dynamic and evolutionary principle we assume that equations of motion, derived in physics for physical systems in the physical space, can be creatively used to construct approximate equations of motion for the corresponding physical models of economic systems in the particular formal economic spaces.

Let us briefly give the following reasons to substantiate such an ab initio approach for the one-good, one-buyer, and one-seller market economy. Let price functions p>1>D(t) and p>1>S(t) designate desired good prices of the buyer and seller, respectively, set out by the agents during the negotiations between them at a certain moment in time