Американский исследователь проблемы Ральф Рене не поленился рассчитать, как часто каждая из якобы состоявшихся лунных экспедиций должна была попасть под солнечную активность.

«Общепринятый теоретический максимум 20-го солнечного цикла длился с декабря 1968 по декабрь 1969 гг. В этот период миссии „Аполлон-8“, „Аполлон-10“, „Аполлон-11“ и „Аполлон-12“ предположительно вышли за пределы зоны защиты поясов Ван Аллена и вошли в окололунное пространство» [5].

В связи с большим количеством вспышек на Солнце в СССР облёт Луны с людьми в корабле 7К-Л1 с 08.12.1968 и последующие отменены. Запускать корабль 7К-Л1 на ракете Протон к Луне продолжили в беспилотном режиме с биообъектами на борту

Оказалось также, что существенное влияние на вариации плотности атмосферы оказывают магнитные бури. Очевидно, это связано с воздействием на магнитосферу Земли потоков солнечной плазмы. Даже относительно слабые геомагнитные возмущения оказывают глобальное воздействие на температуру и плотность верхней атмосферы. Причем относительный эффект этих возмущений особенно велик в минимуме цикла солнечной активности. Во время сильных магнитных бурь температура в зонах полярных сияний может возрастать до 1500° К и даже иногда превышать 3000° К. По результатам анализа торможения спутников в областях полярных сияний на высотах около 300 км отмечено возрастание плотности в несколько раз большее, чем в низких широтах.

Наиболее значительными являются вариации температуры и плотности в течение одиннадцатилетнего солнечного цикла.Температура на экваторе в минимуме и максимуме солнечной активности изменяется в среднем от 600—700 до 1200—1400° К ночью и от 1200- 1400 до 2200—2500° К днем. Таким образом, максимальный перепад температур на верхней границе термосферы от ночных условий в минимуме до дневных в максимуме солнечной активности может достигать почти 2000°К. При этом изменения средней плотности на высотах 500—600 км могут составлять нескольких сотен раз. На ряде спутников серии «Космос» («Космос-108, -196» и др.) были установлены блоки ионизационных манометров для получения данных о плотности атмосферы методом прямых измерений.

На высотах 400—1200 км было получено большое количество масс-спектров ионов водорода, гелия, азота и кислорода и обнаружены весьма значительные вариации ионного состава с местным временем, а также некоторые другие вариации. Оказалось, что ионы гелия в умеренных широтах Северного полушария в период низкой солнечной активности в любое время суток и года и на всех высотах являются лишь малой ионной компонентой. Этот результат изменил сложившиеся к 1964 г. взгляды на строение внешней ионосферы Земли, согласно которым ионы гелия должны были на высотах 1000—2000 км образовывать гипотетическую гелиосферу.

Таким образом, теперь можно уже достаточно определенно говорить о нейтральном составе верхней атмосферы. Начиная с 250—300 км основным компонентом атмосферы становится атомарный кислород. Еще выше, начиная с высот 500—600 км в годы минимума солнечной активности, а с высот 1000—1500 км в годы максимума, атмосфера становится гелиево-водородной. Слой с гелием в виде основной составляющей наблюдается, видимо, лишь в годы максимума солнечной деятельности.

Уже на начальных этапах прямых экспериментальных исследований в околоземном космосе было сделано крупное открытие – обнаружены интенсивные потоки частиц, захваченные геомагнитным полем. Они получили название радиационных поясов Земли. Наблюдения за уровнем ионизирующей радиации велись уже на самых первых спутниках серии «Космос», в частности на «Космосе-2, -7, -9, -10» и др. На борту спутников устанавливались радиометры, в состав которых входили гейгеровские и сцинтилляционные счетчики. Начиная с «Космоса-12 и -15» для анализа энергетического спектра частиц стали применять электростатические анализаторы. Благодаря длительным измерениям с помощью спутников «Космос» определены возможные