Следует отметить, что, в отличие от высказываний Гука, Ньютон разработал математическую теорию гравитации и доказал численными методами действие закона тяготения. Взгляды своих предшественников на тяготение Ньютон выразил одной формулой, которая является математической моделью гравитационного взаимодействия двух материальных тел. Прозрение Ньютона как раз заключалось в том, что он объединил два типа гравитации.
С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование. Действие закона всемирного тяготения в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно, эти силы настолько малы, что их не зафиксируют даже самые точные современные приборы, но они реально существуют и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.
Сила тяготения у поверхности Земли в равной степени воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на нас действует сила земного притяжения, рассчитываемая по закону Ньютона, и мы реально ощущаем ее как свой вес. Если вы что-нибудь уроните, под действием все той же силы этот предмет равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения вблизи поверхности Земли. Для Галилея данный физический параметр был просто экспериментально измеряемой константой. По Ньютону же ускорение свободного падения можно вычислить, подставив в формулу закона всемирного тяготения массу и радиус Земли, помня при этом, что согласно второму закону механики Ньютона сила, действующая на тело, равна его массе, умноженной на ускорение. Тем самым то, что для Галилея было просто предметом измерения, для Ньютона становится предметом математических расчетов и прогнозов.
Наконец, закон всемирного тяготения объясняет механическое устройство Солнечной системы и из него можно вывести законы Кеплера, описывающие траектории движения планет. Для Кеплера его законы носили чисто описательный характер; в них ученый просто обобщил свои наблюдения в математической форме, не подводя их под формулы каких-либо теоретических оснований.
В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения, то есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в четко обоснованные логические выводы при переходе на следующую ступень углубления знаний о мире.
Устройство Солнечной системы по уравнениям Ньютона, объединяющим земную и небесную гравитацию, можно понять на следующем примере. Предположим, вы находитесь у края бетонного пускового колодца на космодроме Байконур и у вас в руках – макет первого искусственного спутника земли. Если сбросить спутник в шахту по вертикали, он начнет равноускоренное падение, описываемое законами Ньютона для движения тела с ускорением свободного падения. Теперь катапультируем спутник в направлении горизонта по дуге параболы. В этом случае его движение будет также описываться законами Ньютона применительно к телу, движущемуся с начальной скоростью под действием силы тяжести. Вспомним запуск первого спутника Земли. Скорости ракетоносителя достаточно, чтобы спутник облетел вокруг земного шара. Если пренебречь сопротивлением стратосферы, спутник, облетев Землю, вернется в исходную точку с первоначальной скоростью и будет продолжать орбитальный полет подобно естественному спутнику – Луне. Так мы перешли от описания падения тела в земных условиях (яблока Ньютона) к описанию движения спутника Земли (Луны), пользуясь одними и теми же законами небесной механики. Именно здесь и ясна вся глубина прозрения Ньютона, соединившего считавшиеся ранее различными по своей природе две силы гравитационного притяжения.