Компании уже используют искусственный интеллект для улучшения услуг, повышения качества продукции, снижения затрат, улучшения обслуживания клиентов и экономии денег на центрах обработки данных. Например, с помощью программного обеспечения для роботов Southwest Airlines и Amadeus могут лучше отвечать на вопросы клиентов и использовать отчеты, созданные клиентами, для повышения своей производительности. В целом в ближайшие десятилетия ИИ затронет почти каждую отрасль. В среднем около 90% рабочих мест в США будут затронуты ИИ к 2030 году, но точный процент зависит от отрасли.
Искусственный интеллект может значительно улучшить многие аспекты нашей жизни. Существует большой потенциал для улучшения здравоохранения и лечения заболеваний и травм, восстановления окружающей среды, личной безопасности и многого другого. Этот потенциал вызвал много дискуссий и споров о его влиянии на человечество. Было показано, что ИИ намного превосходит людей в различных задачах, таких как машинное зрение, распознавание речи, машинное обучение, языковой перевод, компьютерное зрение, обработка естественного языка, распознавание образов, криптография, шахматы.
Многие фундаментальные технологии, разработанные в 1960-х, были в значительной степени заброшены к концу 1990-х, оставив пробелы в этой области. Фундаментальные технологии, которые определяют сегодня ИИ, такие как нейронные сети, структуры данных и т. д. Многие современные технологии искусственного интеллекта основаны на этих идеях и обладают гораздо большими возможностями, чем их предшественники. Из-за медленных темпов изменений в технологической индустрии, хотя текущие достижения привели к некоторым интересным и впечатляющим результатам, их мало чем отличить друг от друга.
Ранние исследования искусственного интеллекта были сосредоточены на изучении обучающихся машин, которые использовали базу знаний для изменения своего поведения. В 1970 году Марвин Мински опубликовал концептуальный документ о машинах LISP. В 1973 году Тьюринг предложил похожий язык, названный ML, который, в отличие от LISP, распознал подмножество конечных и формальных множеств для включения.
В последующие десятилетия исследователи смогли усовершенствовать концепции обработки естественного языка и представления знаний. Этот прогресс привел к развитию повсеместных технологий обработки естественного языка и машинного перевода, используемых сегодня.
В 1978 году Эндрю Нг и Эндрю Хси написали влиятельную обзорную статью в журнале «Nature», содержащую более 2000 статей по ИИ и роботизированным системам. В документе были рассмотрены многие аспекты этой области, такие как моделирование, обучение с подкреплением, деревья решений и социальные сети.
После этого привлекать исследователей к обработке естественного языка становилось все труднее, а новые достижения в области робототехники и цифрового зондирования превзошли современное состояние обработки естественного языка.
В начале 2000-х большое внимание уделялось внедрению машинного обучения. Алгоритмы обучения – это математические системы, которые обучаются в процессе наблюдений.
В 1960-х Бендиксон и Руэль начали применять концепции обучающих машин в образовании и за его пределами. Их нововведения вдохновили исследователей на дальнейшее изучение этой области, и в 1990-х годах в этой области было опубликовано множество исследовательских работ.
В статье Сумита Чинтала 2002 года «Обучение с помощью поддельных данных» обсуждается система обратной связи, в которой искусственный интеллект обучается, экспериментируя с данными, которые он получает в качестве входных данных.