Соответственно, применяем квантовые свойства материального субстрата в процессах синтеза квантовомеханических стержней, далее, рассматривая дальнейшее взаимодействие квантовомеханических стержней с атомами химическими либо полями, синтетическими «атомами», есть положительный выход энергии.

Рассмотрим синтез и взаимодействие векторных «атомов» с химическими. Вырожденная плазма во взаимодействии с МП +ХС синтезируемых стержней и химических атомов. В процессе синтеза стержней применяем квантовые эффекты, туннельную эмиссию электронов на поверхность полупроводника, соответственно, применяем экран-эмиттер электронного газа, арсенид галлия, генерацию магнитного поля магнитами-соленоидами.

В данном физико-химическом процессе вырожденная плазма выполняет функцию щелочного металла-восстановителя, процесс взаимодействия квантовомеханических стержней с водой.

Рассмотрим физико-химический процесс, реакцию – вырожденная плазма во взаимодействии с МП + H>2O, на примере щелочного металла натрия:

Na + H>2O NaOH + ½H>2↑,

реакция восстановления щелочным металлом воды, так как квановомеханический стержень в пределах взаимодействия с ХС, водой устойчив, энергия связи магнитное поле-лептон, e‾ – ОС, меньше в процессе перехода электрона e‾ с орбитали стержня на энергетическую орбиталь воды в процессе восстановления, так что есть выход водорода и выделение энергии. Далее в процессе синтеза квантовомеханических векторных «атомов» мы применили квантовые эффекты: туннельную эмиссию электрона, генерацию магнитного поля. Соответственно, на процесс синтеза стержней энергии, вероятно, мы затратим меньше, чем выделится в результате горения синтезированного водорода, то есть ожидается экзовыход энергии.

Есть процесс восстановления-аккумуляции вырожденной плазмы, электронного газа, есть захват и аккумуляция электронов электромагнитами, образование квантовомеханических стержней в магнитной ловушке, так как в процессе образования вырожденной плазмы участвует квантовый эффект энергии в сумме на захват, аккумуляцию вырожденной плазмы, далее на синтез векторных «атомов» энерготрата, вероятно, меньше, энергии (см. выше горение синтезированного водорода) выделяется, вероятно, больше, соответственно, векторный «атом», физико-химическая квантовомеханическая система энергетически эффективна.

Глава четырнадцатая

Опыт, обнаружение квантовой экзотермичности воды, эксперимент в условиях лаборатории

Применение квантового катализа полупроводниками в процессах лизиса водородсодержащего топлива, экспериментальное изучение энергетически эффективного баланса в лизируемой жидкости водородсодержащих соединений, количества органических.

В стеклянную колбу помещаем электрические элементы, анод и катод, далее колбу заполняем диспергированным полупроводником, арсенидом галлия в воде, водную суспензию арсенида галлия, выход колбы подсоединяем к вакуумному насосу, на цепь подаем импульсы переменного электрического тока, далее колбу облучаем источником электромагнитного поля, мазером на МЦР либо лазером (квантовые генераторы, источники когерентного ЭМ поля), на выходе в результате рассматриваемого плазменно-квантовокаталитического лизиса вероятен водород. В процессе обнаружения применяем газоанализатор на водород либо наблюдаем аудиальный физико-химический эффект – хлопок гремучего газа в процессе сгорания смеси водорода и кислорода.

Схема подачи энергии когерентного ЭМ поля от квантового генератора двухимпульсная. Первый импульс – процесс инициации квантового эффекта в полупроводнике, второй импульс – лизирующий жидкость. Газовую смесь направляем на сжигание, энерговыход измеряем, применяем калориметрию.