Талловый пек применялся следующего состава, масс.%: смоляные кислоты – 20,4, жирные кислоты – 28,1, неомыляемые вещества – 22,8, окисленные вещества – 28,7. Талловый пек обрабатывался полиэтиленполиамином (ПЭПА) при температуре 190ºС в течении 2 часов. Полученная антисептическая добавка представляет собой темно-коричневую твердую массу с температурой размягчения 35ºС.

Физико-химические свойства фунгицидных добавок представлены в таблице 1.

 Таблица 1. Влияние канифоли и талового пека на физико-химические характеристики фунгицидных добавок.



Из данных таблицы1 видно, что обработка канифоли и талового пека аминами приводит к значительному снижению кислотного числа и температуры размягчения (Тразм) получаемых продуктов. Это показывает полноту протекания реакции и отсутствие карбоксильных групп.

Канифоль состоит из лабильных смоляных кислот (СК), которые легко превращаются друг в друга в различные соединения, что сказывается на качестве продукции, поэтому требуются надежные и экспрессные методы их контроля. В настоящее время для анализа СК используются различные методы хроматографии.

2.1.2. Добавки на основе хитина и хитозана


Хитин и его дезацетилированное производное хитозан привлекли внимание широкого круга исследователей и практиков благодаря комплексу химических, физико-химических и биологических свойств и неограниченной воспроизводимой сырьевой базой. Полисахаридная природа этих полимеров обусловливает их сродство к живым организмам, а наличие реакционноспособных функциональных групп (гидроксильные группы, аминогруппа) обеспечивает возможность разнообразных химических модификаций, позволяющих усиливать присущие им свойства или придавать новые в соответствии с предъявляемыми требованиями.

Интерес к хитину и хитозану связан с их уникальными физиологическими и экологическими свойствами такими как биосовместимость, биодеструкция (полное разложение под действием природных микроорганизмов), физиологическая активность при отсутствии токсичности, способность к селективному связыванию тяжелых металлов и органических соединений, способность к волокно- и пленкообразованию и др.

Хитин является одним из наиболее распространенных в природе полисахаридов – ежегодно в живых организмах и некоторых растениях образуется и разрушается около 10 гигатонн этого вещества. Среди биополимеров он занимает второе место по биомассе после целлюлозы. Хитин является опорным компонентом: клеточной ткани большинства грибов и некоторых водорослей; наружной оболочки членистоногих (кутикула у насекомых, панцирь у ракообразных) и червей; некоторых органов моллюсков. В организмах насекомых и ракообразных, клетках грибов и диатомовых водорослей хитин в комплексе с минеральными веществами, белками и меламинами образует внешний скелет и внутренние опорные структуры.

Хитин представляет собой линейный полисахарид и имеет аморфно-кристаллическое структуру, при этом различают три формы хитина: а-, р-, и Y-хитин (в зависимости от расположения восстанавливающего конца полимерной молекулы). Самым стабильным состоянием характеризуется наиболее кристаллизованный хитин: а-хитин. В а-хитине цепи расположены «антипараллельно» (противоположное направление атомов в расположенных рядом цепях), р-хитин отличается параллельным расположением цепей. В ячейке Y-хитина имеются две цепи, расположенные параллельно и одна расположенная антипараллельно по отношению к ним. р- и Y-хитины могут превращаться в а-хитин. Однако все три модификации этого хитина были обнаружены в одном организме, что, возможно, указывает на выполнение различных биологических функций. На рис.4 и 5 представлены фрагменты молекулы хитина и хитозана.