В радиоэлектронике производство самих радиодеталей и радиоэлектронные аппараты носят унифицированный характер.

В других секторах приборостроения эта унификация достигается с соблюдением определенной погрешности (допуска) других параметров: гидравлических, оптических, механических и т. д.

В итоге одни и те же, например, подшипники находят применение в производстве, казалось бы, совсем отдаленных друг от друга изделий.

Таких взаимозаменяемых узлов и деталей, которые позволяют сборку самых разнообразных приборов, механизмов без предварительной обработки этих узлов, в машиностроении очень много: такое свойство узлов (деталей) называют взаимозаменяемостью.

Взаимозаменяемость – это важнейший принцип проектирования, производства и эксплуатации, который обеспечивает сборку (ремонт) независимо изготовленных деталей в узел (узлы) механизмов (приборов). Взаимозаменяемость как принцип предъявляет к узлам (деталям) следующие требования к точности их параметров: геометрическая, механическая, электрическая, и т. п.

При соблюдении точности по вышеуказанным параметрам, технические характеристики узлов (изделий) окажутся в заданных (допустимых) пределах, а их производство – рентабельным.

Достижение вышеуказанных требований в немалой степени зависит от качества материала, из которого изготавливаются узлы изделий. Качеством материала (а это его химические и физические свойства) задается долговечность узлов изделий в приборостроении.

В современном машиностроении целые заводы, полностью работающие в автоматизированном режиме, – привычное явление. Такая степень автоматизации, кооперации, специализации современного производства невозможна без взаимозаменяемости.

Взаимозаменяемость узлов и деталей следует из требований к их точности, а также из необходимости унификации, нормализации, стандартизации.

Требование к точности унифицированных узлов предполагает:

1) наличие определенного стандарта для каждого вида изделий, выражается в нормализации допуска к этой самой точности;

2) соблюдение специфической технологии для каждого вида серийно выпускаемого изделий;

3) соблюдение единства мер (последнее обеспечивает непрерывная поверка измерительных средств).

13. Классификация взаимозаменяемости

По степени сопряжения различается:

1. Полная взаимозаменяемость (когда степень сопрягаемости очень высокая) – прочие физические параметры узлов точно соответствуют заданному, а это диктует их соответствие определенной задан-ности, которая ограничена минимальными и максимальными значениями, а последние следуют из эксплуатационных требований, сама граница допуска рассчитывается по теоретико-вероятностному методу, который изложен в предыдущей главе.

Когда взаимозаменяемость полная, то упрощается сборка, растет масштабность кооперации, повышается степень специализации и обеспечения запчастями, а также эффективность производства, в силу более рационального расхода времени, высокого темпа работы.

В итоге становятся возможными конвейерное производство, организация цехов автоматизированных заводов. Все вышеуказанные достоинства этого вида взаимозаменяемости были бы невозможны без соблюдения довольно жестких требований к точности параметров.

2. Исходя из геометрических параметров и учитывая, насколько присоединяемы узлы различают внешнюю взаимозаменяемость, когда речь идет о сравнении наружных и внутренних размеров, и внутреннюю взаимозаменяемость, когда речь идет о том же самом, однако рассматриваются внутренние части узлов и деталей.

3. Функциональная взаимозаменяемость. Имеется в виду взаимозаменяемость узлов, когда, несмотря на различие между ними по некоторым параметрам, это различие не сказывается на выполнении функций, для которых они предназначены.