Дальнейшее развитие метода совместного измерения

Теперь мы сосредоточимся на наиболее релевантных теоретичеких и практических подходах. Они различаются по процедуре оценки предпочтений и по выбору алгоритмов прогнозирования [31, 32, 34]. Прежде всего, мы проводим различие между следующими подходами.

• Классические – метод компромиссов и метод профилей.

• Гибридные – ACA (декомбинационный анализ) или ACBC (декомбинационный анализ, основанный на выборе).

• Моделирование дискретного выбора (DCM), совместный анализ, основанный на выборе (CBC) и совместный анализ с постоянной суммой (CSC).


Классический подход наталкивается на определенные проблемы валидности при большом количестве атрибутов. Для решения этих проблем ученые разработали гибридные подходы к совместному измерению.

Гибридные подходы сочетают в себе композиционные и декомпозиционные методы. В них применяются скоринговые модели и совместное измерение. Комбинирование двух данных подходов позволяет применять планы полного факторного эксперимента с дробными откликами к нескольким людям [30, 34]. При гибридном анализе респондентов на начальном (композиционном) этапе просят составить изолированные мнения о важности атрибутов и их уровней. На втором (декомпозиционном) этапе они оценивают выбранные комбинации атрибутов. Подобные подходы смягчают когнитивную нагрузку на респондента. Однако усилия по сбору данных здесь возрастают. Наиболее часто используемая форма гибридного совместного измерения – это ACA (декомбинационный анализ).

Купите полную версию книги и продолжайте чтение
Купить полную книгу