Статистические методы моделирования и прогнозирования временного ряда позволяют определить дальнейшую динамику развития уровня себестоимости, затрат, расходов, издержек, следовательно, и развитие самого предприятия, что является очень важным для дальнейшего функционирования предприятия. Это дает возможность увидеть свои перспективы или, наоборот, предупредить и изменить какую-либо негативную ситуацию, то есть не допустить исполнения прогноза.
Потери ресурсов при производстве воспринимаются как неизбежность. Современные статистические методы моделирования прогнозирования позволяют остановить эту неизбежность.
При проведении ФСА зачастую используются такие методы прогнозирования, как «мозговая атака»; синтетика (способ прогнозирования по аналогии); метод «Дельфи» (опрос по заранее подготовленным анкетам); АРИЗ (алгоритм решения изобретательных задач); поэлементный экономический анализ конструкций Ю.М. Соболева.
В основу методики функционально-стоимостного анализа должен быть положен подход анализа, основанный на статистических методах.
Анализ временных рядов и прогнозирование, стационарные и нестационарные процессы в развитии одномерных и многомерных временных рядов, их применение на практике подробно впервые представлены Дж. Боксом и Г. Дженкинсом, изучались М. Кендэлом. Параметризация и прогнозирование временных рядов представлены в теории стохастического прогнозирования. Их практическое применение с использованием ППП Statistica описано в работах В.П. Боровикова и Г.И. Ивченко. Эти методы позволят предупреждать принятие неэффективных решений и тем самым сохранять и повышать финансовую устойчивость, конкурентоспособность продукции (работ, услуг) и оптимизировать себестоимость, затраты, расходы, издержки.
С развитием компьютерной техники, совершенствованием информационных технологий, распространением пакетов прикладных программ (ППП) они стали важным инструментом в деятельности плановых, аналитических, маркетинговых отделов производственных предприятий и объединений, торговых, страховых компаний, банков, правительственных учреждений. В условиях экономической модернизации существенно меняются информационные запросы управляющих структур по объему, составу, достоверности и оперативности информации. В связи с этим для руководителей различных уровней возрастает роль прогнозов в принятии обоснованных управленческих решений.
Стремительное распространение пакетов прикладных программ позволило сделать доступными и наглядными современные методы и подходы статистического прогнозирования. При этом применение эконометрического программного обеспечения позволяет создать для пользователя уникальную среду, в которой статистическая обработка данных становится увлекательным исследованием, позволяющим получать многовариантные решения. Пользователь освобождается от всей черновой работы (проведение трудоемких расчетов, построение таблиц и графиков), на его долю остается исследовательская, творческая работа: постановка задачи, выбор методов прогнозирования, оценка качества полученных моделей, интерпретация результатов. Для этого необходимо иметь определенную подготовку в области прикладной статистики, знать методы и подходы статистического анализа и прогнозирования временных рядов [43]. В исследовании использовались экономико-математические модели, построенные с помощью Microsoft Excel и ППП Statistica:
1) метод аналитического выравнивания – прогнозирование по тренду позволяет определить основную тенденцию;
2) метод Census II – позволяет выделять сезонную и случайную компоненту, то есть провести декомпозицию ряда, разложение его на составные части;