Наконец, поле источника перестало изменяться, и образовавшийся монополь больше ничто не связывает с первичным электрическим зерном, так как в этот момент изменение электрического поля около данного зерна-потенциала равно нулю. Всё множество таких магнитных микромонополей сливается (ток зарядки) в один в зоне индукции таким образом, что каждая сфера потенциалов занимает центрально84 только своё место, увеличивая плотность потенциалов-зёрен на единицу длины спирали данного радиуса. Итак, первое свойство синфазных85 магнитных микромонополей – слияние, но лишь в момент зарядки. Если магнитный поток потенциалов суммарного вихря достигает некоторого минимального квантового предела86, то образуется элементарный магнитный заряд уже способный к свободному самодвижению. Это второе свойство – свободное самовращение с поступательным самодвижением по спирали – разрядка (видео87) элементарного неполяризованного монополя вихрона с рождением волновода (видео88) спирали из электропотенциалов разного диаметра, созданных им. Этот процесс всегда сопровождается возбуждением противодействующего разрядке электрического монополя, выполняющего вспомогательную роль в процессе перезарядки кванта магнитного монополя в свободном вихроне для сохранения среднего значения энергии при полном квантовом преобразовании этого носителя индуктированной энергии в частице со спином равным единице.
Большая заслуга в первичных исследованиях пространственно-временного развития импульсного электрического разряда в вакууме, газе, жидкости и твёрдых телах принадлежит
Воробьёву А. А., Ушакову В. Я., Месяцу Г. А. и другим учёным Томско-сибирской школы высоковольтников.
Предложенную здесь структуру формирования в пространстве волновода-трека движения магнитного монополя подтверждают и экспериментальные исследования этих авторов и в частности работы
В. Я. Ушакова. В этих исследований был установлен ряд уникальных результатов с фотографиями разрядов с высоким разрешением, на которых видны спирали начала вихревых токов на волноводе, оставленного движением магнитного монополя.
Экспериментальные исследования природы и основных закономерностей импульсного электрического пробоя жидкостей.
В 1962 г. В. Я. Ушаковым в Энергетическом институте им. Г. М. Кржижановского (ЭНИН) были начаты исследования пространственно-временных закономерностей пробоя жидкостей с использованием электронно-оптической аппаратуры, обладающей большим временным и пространственным разрешением.
Особенности электрического разряда в жидкостях (многообразие и сложность явлений, малые характерные размеры ~ 10 мкм, высокие скорости развития ~10>5…10>7 см/с) позволяют выделить ряд требований, предъявляемых к методам высокоскоростных оптических измерений: