Здесь V – общее количество голосов, S – общее количество мест. Сейчас я называю эту модель законом сокращения меньшинства, потому что она может применяться более широко, за пределами выборов. Например, она описывает соотношение женщин и мужчин среди ассистентов и профессоров [Taagepera, 1994]. Рассмотренный под другим углом, этот закон также создает паттерн, по которому Европейский союз распределил места в Европейском парламенте между странами [Taagepera, Hosli, 2006].
Сокращение меньшинства выражается в так называемом кубическом законе, когда количество мест в ассамблее составляет кубический корень количества избирателей, соответствующего численности населения. К своему удивлению, я нашел, что это так в большинстве демократических стран. Путем проб и ошибок страны обнаружили, что кубический корень численности населения – это наиболее эффективный размер законодательного собрания. То есть страна с 8 миллионами населения обычно имеет представительное собрание из 200 человек, так как 200 х 200 х 200 = 8 миллионов.
Но почему такой размер наиболее эффективный? Здесь мы подходим к модели оптимальной децентрализации Кохена и Дойча [Kochen, Deutsch, 1969]. Они задались вопросом о том, какое оптимальное количество складских помещений нужно фирме, чтобы обслуживать регион. Если склад только один, то транспортные издержки будут слишком высоки из-за расстояний. Если складов много, то доставка будет дешевле, но возрастут фиксированные издержки на поддержание складов. Иными словами, капитальные затраты растут пропорционально числу складов, в то время как затраты на обслуживание снижаются обратно пропорционально этому числу. Кохен и Дойч выразили это при помощи уравнения. Они дифференцировали это уравнение и нашли решение для числа складов, соответствующего минимальным общим издержкам.
Этот подход годится и для определения размера собраний. Рассмотрим коммуникационную нагрузку на отдельного члена собрания5. В большем собрании ее или его нагрузка количеством избирателей снижается, но нагрузка внутри собрания повышается. Применив логику Кохена и Дойча, мы находим, что общая коммуникационная нагрузка на представителя собрания минимальна, когда количество представителей равно кубическому корню размера населения.
Вспомним, что для «закона» в строгом научном смысле нам нужна не только эмпирическая связь и не только симпатичная логическая модель – нам нужно и то и другое вместе6. Для случая нижней (или единственной) палаты у нас действительно есть и то и другое. Поэтому взаимосвязь можно квалифицировать как закон кубического корня для размера собраний:
S = P>1/3.
Все эти исследования стали увлекательнее физики текстильных волокон, поэтому я начал искать работу в политологии. Я отправил письма в 120 соответствующих департаментов и попросил их выбросить мое письмо, если они считают, что политология находится в хорошем состоянии как наука. Но если они думают, что политологии все еще нужно