. Например, благодаря кому-то была достигнута победа в игре, поскольку без усилий этого конкретного игрока победить не удалось бы ни за что.

Кажется, что у всех этих философских трудов нет ничего общего с вычислительными методами, но это не так. Для компьютерщиков этаким святым Граалем в сфере искусственного разума стала возможность автоматизировать человеческое мышление, а ключевым элементом оказалось нахождение причин и формулировка объяснений. Это используется и в робототехнике (роботам нужны модели мира, чтобы планировать действия и предсказывать их последствия), в рекламе (компания Amazon лучше формулирует рекомендации для целевой аудитории, если знает, что заставило вас кликнуть по клавише «купить прямо сейчас») и медицине (врачи отделения интенсивной терапии моментально узнают, почему состояние пациента внезапно изменилось). И все же для разработки алгоритмов (последовательности шагов по решению задачи) мы должны конкретизировать проблему. Чтобы создать программу для выявления причин, требуется их рабочее определение.

В 1980-х годах группа специалистов по информационным технологиям под руководством Джуды Перла[26] доказала, что философские теории, определяющие каузальные взаимосвязи в терминах вероятностей, можно представить графически, обеспечив одновременно визуальное изображение причинных связей и способ кодирования математических зависимостей между переменными. Что еще важнее, эксперты предложили методы построения графических моделей на основе предварительного знания и методов их выведения из имеющихся данных[27]. Эти работы породили множество новых вопросов. Можно ли определить взаимосвязь там, где запаздывание между причиной и следствием – величина переменная? Если сами взаимосвязи со временем изменяются, что мы можем узнать? Кроме того, компьютерщики разработали метод автоматизации поиска объяснений, а также методы тестирования объяснений для каждой модели.

В последние несколько десятилетий заметен существенный прогресс, но многие проблемы по-прежнему не решены – главным образом потому, что нашей жизнью все в большей степени правит информация. Однако вместо тщательно выверенных баз данных, собираемых исключительно в рамках научных исследований, мы имеем дело с громадным массивом неопределенных сведений, полученных в результате простых наблюдений.

Представим на первый взгляд несложную проблему: определить социальный статус людей по данным Facebook. Первая сложность заключается в том, что этой социальной сетью пользуется далеко не каждый, так что вы изучите лишь определенную группу, которая может не быть репрезентативной для населения в целом. Вторая: не все используют Facebook одинаково. Кто-то вообще не указывает статус отношений, кто-то лжет, а кто-то просто не обновляет профиль.

Итак, возникла масса проблем с формулированием выводов о причинных зависимостях. Самые важные заключаются в поиске причин на основе неточных данных или данных, в которых отсутствуют необходимые переменные и результаты наблюдений (если мы не фиксируем фактов курения, не начнем ли выискивать другие условия, вызывающие рак легких?), сложных взаимосвязей (что происходит, когда для наступления следствия требуется целая последовательность событий?), а также причин и следствий нерегулярных ситуаций (что вызвало резкий обвал фондового рынка в 2010 году?).

Что интересно, именно массивы данных, к примеру электронные медицинские карты, сводят на одном поле здравоохранения специалистов как по эпидемиологии, так и по информатике, которые разбираются в факторах, влияющих на здоровье населения. Доступность исторических данных о состоянии здоровья больших групп населения – их диагнозы, симптомы, лечение, экологические условия проживания и многое другое – становится громадным преимуществом для исследователей, старающихся понять факторы, которые влияют на состояние здоровья, а затем использовать это понимание для плановых действий в здравоохранении. Соответствующие вызовы лежат одновременно в области планов клинических исследований (с традиционным упором на эпидемиологические аспекты) и в возможности делать эффективные и достоверные заключения на основе крупных наборов данных (здесь главное место отводится компьютерной науке).