, превращая их в Fe>3+, что приводит к отложению разных соединений железа, главным образом – ржавчины. Но и сероводород, и ионы железа – тоже исчерпаемый ресурс. К тому же эти электроны потом надо куда-то девать: нужен акцептор электронов.

Некоторые бактерии обратились к практически неисчерпаемому ресурсу – воде. Они обзавелись весьма своеобразными окрашенными молекулами, пигментами9 (самый известный из них – хлорофилл), которые улавливают фотоны и за счет их энергии становятся сильными окислителями (алчными отнимателями электронов, если говорить на человеческом языке). Эти молекулы один за другим отнимают электроны у целой группы ионов, заряжая эту группу постепенно, как зубец за зубцом взводится пружина арбалета. В конце концов эта группа ионов отнимает электроны у мирно проплывавшей мимо молекулы воды, превращая ее (помимо отнятых электронов) в два иона водорода Н>+ и атом кислорода, который немедленно соединяется с еще одним таким же обломком молекулы воды в молекулу О>2. Электроны и ионы водорода в дальнейшем используются для синтеза АТФ (универсального энергоносителя живых клеток) и в конечном итоге связывания атмосферного углерода (сейчас – из углекислого газа СО>2, поначалу – скорее всего, из метана СН>4). На самом деле этот механизм, развивавшийся долгими извилистыми путями, гораздо сложнее и вариативнее описанного.

Для нашего рассказа важны две вещи. Во-первых, вся эта процедура, называемая фотосинтезом, способна создавать несущие энергию молекулы углеводов за счет энергии Солнца. Не важно, что ее КПД не слишком высок, – важно, что это дает жизни на Земле источник органических молекул взамен давно съеденных абиогенных веществ из раннего периода развития жизни. И этот ресурс ограничен, строго говоря, только притоком солнечной энергии (сегодняшняя биосфера, включая нас самих, использует лишь ее малую часть, а вот если мы построим так называемую сферу Дайсона…). В человекоразмерных временных масштабах можно считать этот источник энергии неисчерпаемым. Слава Богу.

Заметим, что механизм фотосинтеза чрезвычайно сложен. Он требует множества белков (и генов для них), а кроме белков – гемоподобные структуры, среди которых хлорофилл далеко не одинок, и систему транспорта электронов, и биохимические циклы связывания углерода, и многое другое. Как все это эволюционировало, тем более что по отдельности компоненты этой системы могли быть совершенно нефункциональны, – загадка, настолько интересная, что так и хочется заподозрить Создателя в целенаправленном вмешательстве и здесь тоже. Однако загадка – еще не тайна, и существуют определенные догадки, как это могло произойти.

Побочный продукт фотосинтеза – кислород – попадает в атмосферу. Для современных первым фотосинтезирующим бактериям клеток это был ужас и кошмар, названный впоследствии кислородной катастрофой. Для подавляющего большинства существовавших тогда, около 2—2,5 млрд лет назад, бактерий10 кислород был смертельным ядом. Почти все они – по приблизительной оценке порядка 90% видов – вымерли. Если бы у протерозойских бактерий была ООН, они, конечно, проводили бы бесконечные конференции о противодействии кислородной катастрофе и требовали бы от цианобактерий прекратить выбросы кислорода в атмосферу. Но ООН у них по объективным причинам не было, так что они тихо окислились и стали пищей для выживших. Мы являемся потомками победителей в этой эволюционно-экологической драме, так что – слава Богу.

Накопление кислорода в атмосфере привело к масштабным изменениям ее состава. Метан окислился до углекислого газа, аммиак – до азота (70% сегодняшней атмосферы), сероводород (не съеденный более древними серобактериями) – до оксидов серы. Тогдашние дожди были весьма и весьма кислыми из-за этих оксидов… Постепенно кислорода становилось все больше, и когда все, что могло окислиться в атмосфере, окислилось, кислород стал в этой атмосфере накапливаться, а где-то в промежутке между 2 и 1 млрд лет назад сформировался и озоновый экран, защищающий нас от вредных компонентов солнечного излучения.