E(ε1) = E(ε2) = … = E(εn) = 0, (15)
Var(ε1) = Var(ε2) = … = Var(εn) = σ2(16)
Cov(εi, εj) = 0 при i≠j(17)
Cov(xi,εj) = 0 при всех значениях i и j (18)
В этом случае справедливы следующие утверждения:
а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид:
б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов:
в) ковариационная матрица оценки (19) вычисляется по правилу:
г) несмещенная оценка параметра σ2 модели (2) находится по формуле:
Следствие теоремы Гаусса-Маркова. Оценка
доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений:
Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам:
[x] = x1 + x2 +…+ xn,
[y] = y1 + y2 +…+ yn, (24)
x2] = x12 + x22 +…+ xn2,
[xy] = x1*y1 + x2*y2 + … + xn*yn.
Явный вид решения системы (23):
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).
Метод наименьших квадратов позволяет получить такие оценки параметров β0 и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) ỹ минимальна:
В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):
.
Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β0+β1xi:
Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:
где
– среднее значение зависимой переменной;
– среднее значение независимой переменной;
– среднее арифметическое значение произведения зависимой и независимой переменных;
– дисперсия независимой переменной;
Gcov (x, y) – ковариация между зависимой и независимой переменными.
Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии осуществим иной подход к решению данной проблемы.
Линейная модель парной регрессии может быть записана в виде:
где у – значения зависимой переменной;
х – значения независимой переменной;
– среднее значение зависимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:
уi– значения зависимой переменной,
n – объём выборки;
– среднее значение независимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической: