Соответственно, в этой книге не будет фундаментальным образом рассматриваться генетика, эпигенетика и биохимия роста, и я коснусь клеточного роста только при описании траекторий роста одноклеточных организмов и жизни скоплений микроорганизмов, чье присутствие составляет значительные и даже преобладающие доли биомассы в некоторых экосистемах. Аналогично, говоря о растениях, животных и людях, я собираюсь заострить внимание не на биохимической специфике и сложностях роста на внутриклеточном, клеточном уровне и уровне органов – существуют интереснейшие исследования развития мозга (Brazier, 1975; Kretschmann, 1986; Schneider, 2014; Lagercrantz, 2016) или сердца (Rosenthal and Harvey, 2010; Bruneau, 2012), – а на организмах в целом, включая экологический фон и результаты роста, и я также отмечу некоторые ключевые факторы окружающей среды (от питательных микроэлементов до инфекций), часто ограничивающие рост организмов или препятствующие ему.

Физический рост человека будет рассмотрен довольно подробно с акцентом как на индивидуальные (и зависящие от пола) траектории увеличения роста и веса (а также нежелательный рост ожирения), так и на коллективный рост населения. Я представлю исторические взгляды на рост населения, оценю текущие тенденции роста и изучу возможные будущие глобальные или некоторые национальные траектории. Но я не стану касаться социально-психологического роста (стадий развития, личности, стремлений, самоактуализации) или роста сознания: эти темы подробно рассмотрены в психологической и социологической литературе.

Прежде чем перейти к систематическому исследованию роста в природе и обществе, я кратко представлю единицы измерения и варианты траекторий роста. Эти траектории включают беспорядочное движение, в котором трудно выявить общие тенденции (что часто наблюдается на рынке ценных бумаг), простой линейный рост (когда в песочных часах каждую секунду сыплется одинаковое количество песка), временно экспоненциальный рост (обычно демонстрируемый в таких разнообразных феноменах, как организмы на ранней стадии развития, наиболее интенсивные фазы внедрения технических инноваций и создание биржевых пузырей) и прирост, соответствующий разнообразным изолированным (ограниченным) кривым роста (как, например, размеры всех организмов), чью форму можно выразить с помощью математических функций.

Большинство процессов роста – будь то организмы, артефакты или комплексные системы – подчиняются S-образным (сигмоидальным) кривым роста, соответствующим логистической функции (или уравнению Ферхюльста) (Verhulst, 1838, 1845, 1847), предшествовавшей ей (Gompertz, 1825) или одной из их производных, чаще всего сформулированных Берталанффи (von Bertalanffy, 1938; 1957), Ричардсом (Richards, 1959), Блумбергом (Blumberg, 1968) и Тернером и др. (Turner et al., 1976). Но естественная изменчивость, а также неожиданные вмешательства часто ведут к значительным отклонениям от прогнозируемого курса. Вот почему начинающим исследователям роста лучше начинать с более или менее полного набора данных и смотреть, какая из доступных функций роста наиболее точно описывает ее.

Если двигаться в обратном направлении – взять несколько первых точек на разворачивающейся траектории роста и использовать их для построения кривой стабильного роста, соответствующей конкретной выбранной функции роста, – то вероятность успеха велика, только если пытаться прогнозировать рост, который, скорее всего, будет происходить по известной, многократно продемонстрированной модели, например многими видами хвойных деревьев или пресноводной рыбы. Но выбор случайной S-образной кривой в качестве прогностического фактора роста для организма, не принадлежащего к хорошо изученным группам, выглядит сомнительным, поскольку конкретная функция может оказаться не слишком точным (чувствительным) прогностическим инструментом для феноменов, рассматриваемых только на ранней стадии роста.