Во-первых, углерод легко образует двойные связи (важнейшее для земной биохимии свойство!), а кремний из-за большего размера атома к этому неспособен.
Во-вторых, двуокись углерода (CO>2) – это при нормальных условиях углекислый газ, прекрасно растворяющийся в воде. А двуокись кремния (SiO>2) при тех же условиях – тугоплавкое твердое вещество с кристаллической решеткой, прошитой множеством ковалентных связей. Чистый SiO>2 – это попросту кварц. Очевидно, что включить его в обмен веществ было бы гораздо труднее, чем углекислоту CO>2.
В-третьих, кремний-кремниевая связь менее прочна, чем углерод-углеродная, поэтому кремневодороды по сравнению с углеводородами гораздо легче разлагаются.
В итоге надо признать: вероятность, что жизнь на других планетах окажется углеродной, достаточно высока. И тот факт, что наша собственная жизнь оказалась углеродной, определенно неслучаен. Но это вовсе не значит, что живые существа, возникшие в любой точке Галактики, будут копиями земных! Любители поспорить о возможности кремниевой жизни зачастую упускают из виду, что альтернативная биохимия, очень сильно отличающаяся от земной, в принципе может быть получена и без всякого нарушения “углеродного шовинизма”.
Давайте-ка еще раз присмотримся к химическим компонентам живых клеток. Из тех веществ, которые нам уже знакомы, в состав клеток входят, прежде всего, спирты, углеводы, сложные эфиры, карбоновые кислоты, оксикислоты и аминокислоты. Что у них общего? Ответ однозначен: все эти соединения – кислородсодержащие. Мы уже видели, что группы, за счет которых они отличаются друг от друга, почти всегда включают кислород (аминогруппа тут – единственное исключение, но и в аминокислотах кислород по определению всегда есть). Итак, земная жизнь построена из кислородсодержащей органики.
Однако ниоткуда не следует, что эта возможность – единственная. В состав органических молекул вполне могут входить и многие другие элементы помимо кислорода – например, азот и сера. С азотом мы уже знакомы, а о сере (S) сейчас достаточно сказать, что ее валентность в органических веществах чаще всего равна двум – как у кислорода. А теперь назовем навскидку несколько классов органических соединений, в которых есть азот или сера, зато никакого кислорода нет (см. рис. 1.9):
• имины – соединения с двойной связью между углеродом и азотом (C=N);
• нитрилы – соединения с тройной связью между углеродом и азотом (C≡N);
• азосоединения, включающие двойную связь между атомами азота (N=N);
• тиолы, тионы, тиоэфиры, тиоальдегиды и тиокарбоновые кислоты – аналоги, соответственно, спиртов, кетонов, простых эфиров, альдегидов и карбоновых кислот, в состав которых вместо кислорода входит сера.
Зная валентности элементов, мы можем легко представить себе набор простых представителей иминов (CH>3–CNH – CH>3), нитрилов (CH>3–C≡N), азосоединений (CH>3–N=N – CH>3), тиолов (CH>3–SH), тионов (CH>3–CS – CH>3), тиоэфиров (CH>3–S – CH>3), тиоальдегидов (CH>3–CS – H) и тиокарбоновых кислот (CH>3–CS – SH). В химическом “зоопарке” Земли это довольно редкие экспонаты – настолько, что не во всяком учебнике химии найдется упоминание о них. Но везде ли во Вселенной дело обстоит именно так? Мы этого не знаем. Если какая-нибудь планета будет по своему элементному составу обеднена кислородом, то вполне возможно, что основой жизни на этой планете послужит не кислородсодержащая органика, а азотсодержащая или серосодержащая. Такая жизнь будет вполне “углеродной” и тем не менее химически совсем иной, чем земная.
Есть, например, предположения, что молекулярная основа инопланетной жизни может иметь смешанный углеродно-азотный скелет