Рис. 1.7. Вакуумная трубка, первый транзистор, микросхема процессора в корпусе


Рис. 1.8. Чип интегральной схемы


Из-за того, что интегральные схемы основаны на кремнии, регион в Калифорнии к югу от Сан-Франциско, где впервые возник бизнес по производству этих схем, стали называть Кремниевой долиной. Сейчас так условно называют все высокотехнологичные предприятия в этом регионе, а это название стало вдохновляющим для десятка подражателей, таких как Кремниевая аллея (Silicon Alley) в Нью-Йорке и Кремниевый торфяник (Silicon Fen) в Кембридже, Англия.

ИС изобрели примерно в 1958 году, причем открытие независимо друг от друга сделали Роберт Нойс и Джек Килби. Нойс умер в 1990 году, но Килби за свой вклад получил в 2000 году Нобелевскую премию по физике. Хотя интегральные схемы занимают центральное место в цифровых устройствах, другие технологии здесь также используются: магнитное запоминающее устройство для дисков, лазеры для CD и DVD и оптическое волокно для сетей. За последние 50–60 лет все они радикально изменились в размерах, производительности и стоимости.

1.3. Закон Мура

В 1965 году Гордон Мур, который затем станет соучредителем компании Intel и будет работать там генеральным директором на протяжении многих лет, опубликовал короткую статью под названием «Втиснуть больше компонентов в интегральные схемы»>23. Экстраполируя очень ограниченное количество данных, Мур заметил, что с усовершенствованием технологий количество транзисторов, которые удавалось встроить в интегральные схемы заданного размера, удваивалось примерно каждый год. Затем, пересмотрев расчеты, он изменил этот показатель на «каждые два года», а другие исследователи говорили о 18 месяцах. Поскольку вычислительную мощность можно грубо определять по количеству транзисторов, то она тоже удваивалась каждые два года, если не быстрее. За 20 лет должно было произойти 10 удвоений, и количество устройств увеличилось бы в 2>10, то есть примерно в 1000 раз. За 40 лет – в миллион раз или больше.

Такой экспоненциальный рост, ныне известный как закон Мура, продолжается уже почти 60 лет, и поэтому в интегральные схемы сейчас встраивают в миллион раз больше транзисторов, чем в 1965 году. График действия закона Мура, особенно для микросхем процессора, показывает рост количества транзисторов от пары тысяч для ЦПУ Intel 8008 в начале 1970-х годов до миллиарда в ЦПУ недорогих потребительских ноутбуков нашего времени.

Наилучшим образом масштабы схемы характеризует какое-либо отдельное число, обозначающее размер того или иного элемента интегральной схемы – например, ширину провода или активной части транзистора. Этот показатель неуклонно сокращается на протяжении многих лет. В первой (и единственной) интегральной схеме, которую я однажды разрабатывал в 1980 году, величина элементов равнялась 3,5 микрона (3,5 микрометра). В 2021 году для многих ИС минимальный размер элементов составлял 7 нанометров, или 7 миллиардных долей метра, а следующим шагом будет 5 нанометров. «Милли» – это одна тысячная доля, или 10>->3; «микро» – одна миллионная, или 10>-6; «нано» – одна миллиардная, или 10>->9, а нанометр сокращенно обозначается как нм. Для сравнения: толщина листа бумаги или человеческого волоса составляет 100 микрометров, или 1/10 миллиметра.

Если ширина элементов в интегральной схеме уменьшится в 1000 раз, то количество компонентов на единицу площади увеличится в квадратной зависимости, т. е. в миллион раз. Соответственно, там, где по старому производственному процессу размещали тысячу транзисторов, теперь хватит места для миллиарда.