Сравниваем расчетное значение F-статистики с критическим

, то есть 78,2 > 2,6. Следовательно, можно сделать вывод, что гипотеза
о незначимости регрессии в целом отвергается.

Тест Фишера можно провести также в полуавтоматическом режиме и в автоматическом режиме. Полуавтоматический режим состоит в том, что нам не нужно вручную вычислять значение расчетной F-статистики, оно дано в распечатке на рис. 2.2. В этом случае нужно лишь выяснить критическое значение F-статистики и сравнить расчетное значение с критическим.

В автоматическом режиме нужно также воспользоваться распечаткой GRETL и посмотреть на р-значение статистики Фишера на рис. 2.2 (в распечатке р-значение (F)). В р-значении содержится вероятность ошибки I рода. Таким образом, р-значение (F) для теста Фишера – это вероятность ошибки I рода при тестировании гипотезы

. По существу это вероятность ошибиться, отвергнув гипотезу H>0. Для принятия решения, можно ли отвергнуть гипотезу H>0, нужно сравнить р-значение с заданным уровнем значимости a. Уровень значимости задает вероятность ошибки I рода, то есть, грубо говоря, какую долю ошибок мы готовы себе позволить, отвергнув гипотезу H>0. Если р-значение меньше принятого уровня значимости, то маловероятно, что мы ошибемся, отвергая гипотезу H>0 в ситуации, когда р-значение больше уровня значимости, вероятна ошибка в случае отклонения нулевой гипотезы, поэтому ее стоит принять. Отсюда можно сделать вывод, что р-значение показывает вероятность ошибиться, отвергнув гипотезу H>0, при том, что она верна. Эта интерпретация р-значения справедлива для всех статистических тестов, и мы будем иметь ее в виду в дальнейшем. В данном случае р-значение (F)
(р-значение (F) в распечатке представляет собой «3,41e-41» – это компьютерный способ записи числа
, которое практически равно 0). Это говорит о том, что можно отвергнуть гипотезу H>0 (вероятность ошибки близка к 0).

Стоит обратить внимание еще на один полезный факт. При расчете F-статистики вручную мы использовали формулу

. Используя соотношение
, можно переписать расчетную статистику через коэффициент детерминации, не используя квадраты остатков
.

4. Тест Стьюдента (t-test)

После того как мы проверили незначимость регрессионного уравнения в целом, рассмотрим, как проверять незначимость коэффициентов при отдельных регрессорах. Для этой цели воспользуемся тестом Стьюдента [3].



Проверим незначимость коэффициента при переменной . Сформулируем гипотезы теста для указанной переменной [файл с данными wage1.gdt]. Они будут выглядеть следующим образом:




Значение оцененного коэффициента при этой переменной находится в столбце «Коэффициент» –

. Для того чтобы вычислить расчетную t-статистикy, необходимо знать значение стандартной ошибки для коэффициента, оно содержится в столбце «Ст. ошибка». Для переменной
стандартная ошибка
. Отсюда можем вычислить
. Для принятия решения о том, можно ли отвергнуть гипотезу H>0, сравним значение
с критическим значением статистики
. Примем уровень значимости
. Как уже было сказано, объем выборки составляет 526 наблюдений, то есть n = 526. Число регрессоров в модели составляет 4 (константа тоже регрессор), то есть, k = 4. Отсюда следует, что нужно искать критическое значение из двустороннего распределения Стьюдента
на уровне значимости 5 % (одностороннее распределение 2,5 %) с 522 степенями свободы. Для поиска критического значения из распределения Стьюдента можно воспользоваться статистическими таблицами, например из [7]. Но можно воспользоваться возможностями GRETL. Для этого в основном меню выберем