В централизованных программных системах выделяется один центральный компонент, с которым соединяются отдельные периферийные компоненты. В противоположность такой схеме компоненты распределенных систем формируют сеть взаимосвязанных элементов без выделения какого-либо центрального элемента с функциями координации и управления.
Рис. 2.1 Распределенная (слева) и централизованная (справа) архитектуры системы
На рис. 2.1 схематично изображены эти две противоположные архитектуры. Закрашенные серым цветом кружки представляют компоненты системы, также называемые узлами (nodes), а линии обозначают связи между ними. В этот момент несущественны подробности, касающиеся того, что эти компоненты делают и какая информация передается между узлами. Здесь самым важным является сам факт существования двух различных способов организации программных систем. В левой части рис. 2.1 распределенная архитектура демонстрирует, как соединяются друг с другом компоненты без какого-либо центрального элемента. Важно понять, что в этой схеме нет компонентов, напрямую связанных со всеми прочими компонентами. Но при этом все компоненты взаимосвязаны друг с другом, по крайней мере, не напрямую. В правой части рис. 2.1 показана централизованная архитектура, в которой каждый компонент связан с одним центральным компонентом. Периферийные компоненты не имеют прямых связей друг с другом. Для каждого периферийного компонента существует единственная прямая связь с центральным компонентом.
Ниже перечислены основные преимущества распределенной системы по сравнению с отдельными компьютерами [32]:
• более высокая вычислительная мощность;
• снижение стоимости (накладных расходов, издержек);
• более высокая надежность;
• возможность естественного роста.
Более высокая вычислительная мощность
Вычислительная мощность распределенной системы определяется как сумма объединенных вычислительных мощностей всех компьютеров, входящих в состав такой системы. Таким образом, распределенные системы обычно обладают более высокой вычислительной мощностью, чем каждый компьютер в отдельности. Этот факт подтверждается даже при сравнении распределенных систем, состоящих из компьютеров с относительно низкой вычислительной мощностью, с отдельными суперкомпьютерами.
Снижение стоимости (накладных расходов, издержек)
Цены на обычные типовые компьютеры, устройства памяти, дисковые накопители и сетевое оборудование постоянно и очень быстро снижаются в течение последних 20 лет. Поскольку распределенные системы состоят из множества компьютеров, первоначальная стоимость распределенных систем выше, чем первоначальная стоимость отдельного компьютера. Но затраты на создание, обслуживание и поддержку функционирования суперкомпьютера остаются гораздо более высокими, чем затраты на создание, сопровождение и обеспечение функционирования распределенной системы. Наиболее ярким подтверждением этого факта является отсутствие какого-либо заметного воздействия на систему в целом при замене отдельных компьютеров в распределенной среде.
Более высокая надежность
Повышенная надежность распределенной системы основана на том факте, что сеть компьютеров как единое целое способна продолжать работу даже при выходе из строя отдельных машин, составляющих ее. В распределенной системе нет так называемой единой точки отказа (single point of failure – SPOF). При отказе одного элемента все прочие элементы продолжают работу. Таким образом, отдельный суперкомпьютер обладает меньшей надежностью, чем распределенная система.
Возможность естественного роста