). Толщину льда в микроволновом диапазоне лучше определять с помощью многочастотных СВЧ-радиометров, причем для тонких льдов лучше использовать коротковолновые каналы 8 мм – 5 см, а для толстых льдов – канал 21 см. В настоящее время отладка разработанной модели выполняется с использованием данных измерений самолетных СВЧ-радиометров (Ji et al., 2007).

Комбинированные методы. В последнее время развиваются методы оценки толщины ледяного покрова с помощью спутниковой альтиметрии – лазеров и радаров-альтиметров. Луч лазера и луч радара обладают различной способностью проникновения в поверхностный слой снега: лазерный сигнал отражается от поверхности снега, а радарный проходит сквозь слой снега (h>s) до поверхности льда. Таким образом, радары-альтиметры измеряют надводную толщину льда, а лазерные альтиметры – расстояние от спутника до верхней границы снежного покрова, находящегося на льду (h>f.). Комбинирование этих двух видов измерений позволит более точно оценивать толщину ледяного покрова (h>i). Расчет h>i. проводят по уравнению плавучести с учетом плотности морской воды (ρ>w), снега (ρ>s), и льда (ρ>i) (Connor et al., 2009):



Основным недостатком радаров-альтиметров является зондирование только вдоль узкой трассовой полосы и низкое пространственное разрешение (порядка 7 км для радара-альтиметра RA-2), что не позволяет в настоящее время рассматривать радары-альтиметры в качестве источников ледовых данных для решения оперативных задач.

3. Обнаружение опасных ледяных образований

При решении задач освоения природных углеводородных месторождений на шельфе полярных морей наибольшую опасность для сооружений и инженерных конструкций представляют ледяные нагромождения деформированного морского льда и фрагменты льда материкового происхождения. Для арктических морей основную проблему при обеспечении жизнедеятельности на морских акватория представляют следующие опасные ледяные образования (ОЛО): многолетние ледяные поля диаметром 500 м и более; айсберги и их обломки; поля толстого однолетнего льда с большими (более 3 м высотой) грядами торосов; всплывшие и подвижные стамухи. Спутниковые технологии должны обеспечивать соответствующие эксплуатационные службы компаний, осуществляющих хозяйственную деятельность в шельфовой зоне, оперативной информацией о морфометрических характеристиках гряд торосов и стамух, параметрах айсбергов (габариты, скорость и направление дрейфа) и пр.

Экспертный анализ и интерпретация изображений являются пока наиболее надежным и точным способом получения информации по обнаружению ОЛО и их характеристикам. Причем без наличия опорных полевых наблюдений часто не представляется возможным сделать достоверное заключение об обнаружении ОЛО. На рис. 7 представлено изображение с ИСЗ RADARSAT, на котором с помощью наземной исследовательской группы удалось идентифицировать крупную стамуху. При этом, по полевым наблюдениям, в радиусе пяти километров от указанной стамухи располагались еще несколько стамух приблизительно такого же размера, в том числе и в южном направлении. Однако на спутниковом изображении такие объекты не были обнаружены. Этот факт может быть связан с неблагоприятной случайной взаимной ориентацией угла и направления зондирования в момент съемки стамух.


Рис. 7. РСА изображение со спутника RADARSAT, на котором удалось идентифицировать изображение стамухи (выделено кружком) 22 апреля 2007 г.


Наиболее перспективным является оперативный мониторинг ОЛО на основе совместного комплексного анализа данных SAR (спутников RADARSAT, Envisat), данных тепловых каналов оптического диапазона спутников NOAA и Terra, наземных наблюдений на судах и береговых станциях, а также модельных расчетных данных. Важным условием таких комплексных наблюдений является регулярный, а не эпизодический спутниковый мониторинг состояния ледяного покрова. Одним из методов объективного мониторинга ОЛО с помощью спутниковых данных может быть метод нейронных сетей. Для выделения ОЛО по этому методу, помимо текстурных характеристик, могут использоваться и иные входные параметры. Например, для айсбергов это могут быть: наличие и конфигурация открытой воды за движущимся айсбергом и ветровые данные.