освобождая верхние уровни от ненужной детализации. Существенно, что вычислительный процесс мыслился при этом также «объемным», протекающим одновременно, либо попеременно на каждом из этих уровней. Громоздкие и трудоемкие вычисления часто чрезвычайно упрощались при переходе на другой уровень. Представлялось, что в разумной стратегии переходов с одного уровня на другой кроется значительный резерв для повышения экономики вычислений. На этой же уровневой основе была создана оригинальная теория и методология трансляции, гибко сочетающая компиляцию и интерпретацию.

Ряд объективных обстоятельств способствовал тому, что до середины 60-х годов программирование в СССР развивалось до некоторой степени автономно от зарубежного [1, 3, 4]. К этим обстоятельствам относились:

• более позднее начало массового производства электронной вычислительной техники (примерный сдвиг – 5 лет);

• меньшее количество доступных вычислительных ресурсов, приведшее к не столь широкому размаху работ, как в США или в Англии;

• практическое отсутствие импорта вычислительных машин и технологий;

• языковый барьер и сравнительно менее интенсивные личные контакты специалистов (в частности, вследствие секретности);

• некоторые общие отличия в организации и стиле научных исследований и производства.

Заметное влияние на общее развитие программирования в мире оказали работы Ю.И. Янова, приведшие к созданию теории схем программ, и некоторые работы по оптимизации трансляции. Существенный вклад в мировую тенденцию внесло широкое распространение Алгола-60 в СССР. Большая часть результатов представляла независимые, индивидуальные, практические разработки, без которых невозможно было полноценное развитие отечественного программирования.

Одним из факторов, сузившим фронт работ по автоматизации программирования в несекретных отраслях народного хозяйства, в это время было преобладание научных применений универсальных ЭВМ. Большая часть программистов в СССР была математиками с университетским образованием. Почти все успешные «художественные» экспериментальные и вычислительные программы кое-как переделывались в программный продукт, и это «кое-как» иногда мешало эксперименту и не давало должного эффекта при применении продукта. При всех положительных сторонах этого обстоятельства потребовалось длительное время, пока была осознана и реализована необходимость сбалансировать эту сторону вузовского образования с воспитанием способности к инженерному стилю работы, столь необходимому в системном программировании для создания крупных программных продуктов реального времени (см. главу 4).

В середине 50-х годов появились небольшие по численности группы математиков, привлеченных к разработкам проектов вычислительных машин, проводившихся в небольшом числе проектных организаций и институтов в Москве, Ленинграде, Киеве, Минске, Пензе. Каждая вновь разрабатываемая машина, прежде всего, требовала создания для нее операционной системы и программ вычисления элементарных функций. При этом необходимо было добиваться предельной эффективности таких вычисления на данной конкретной архитектуре и ресурсах ЭВМ. Это требовало от математиков высокого уровня понимания деталей логики работы процессора. Возможно, что именно это явилось отличительной чертой отечественных школ программирования, чертой теснейшей их связи с инженерными разработками, которая определила в дальнейшем, как достоинства, так и недостатки в работе этих школ.

Теоретические исследования методов программирования для ЭВМ в 1950-е – 60-е годы, активно проводились в Московском, Ленинградском и Киевском университетах, в Институте автоматики и телемеханики АН СССР, в Вычислительном центре АН СССР [1, 4]. В 1950 году в ИТМ и ВТ начал работать первый постоянный семинар по программированию, которым руководил Л.А. Люстерник, в МГУ в 1952-м году была основана кафедра вычислительной математики (ее возглавил С.Л. Соболев). В 1953-м году в Математическом институте АН СССР был создан отдел программирования во главе с А.А. Ляпуновым, а в 1955-м году был основан Вычислительный центр МГУ, специализировавшийся на разработке и применении