В больших кластерах не только отдельные узлы, но и целые подсети могут выходить из строя. MapReduce учитывает такие сценарии, предоставляя механизмы для обработки более сложных отказов. Например, система может обнаружить, что группа узлов, связанная с определенной сетью, стала недоступной, и она перенаправляет задачи на узлы в других сетях или подсетях.

В процессе выполнения задач MapReduce постоянно мониторит состояние выполнения, что позволяет оперативно реагировать на сбои. Веб-интерфейс и лог-файлы системы дают администраторам кластера возможность видеть статус каждой задачи, включая информацию о том, сколько задач были перезапущены из-за сбоев и на каких узлах они были выполнены успешно. Это не только помогает в управлении текущими задачами, но и предоставляет важные данные для анализа производительности и надежности кластера.

Благодаря этим встроенным механизмам отказоустойчивости, MapReduce гарантирует завершение обработки данных, даже если отдельные узлы кластера выходят из строя. Автоматическое обнаружение сбоев, перезапуск задач на других узлах, репликация данных и мониторинг выполнения задач создают высоконадежную и устойчивую к сбоям систему. Эти особенности делают MapReduce идеальным инструментом для работы с большими данными в распределенной среде, где отказоустойчивость является ключевым требованием.

5. Архитектура «мастер-слейв»:

MapReduce, как и многие распределенные системы, использует архитектуру "мастер-слейв" для управления распределением и выполнением задач в кластере. Эта архитектура включает в себя центральный управляющий узел, называемый JobTracker (в ранних версиях Hadoop), и множество подчиненных узлов, называемых TaskTracker. В современной реализации Hadoop JobTracker заменен на ResourceManager и ApplicationMaster в рамках системы управления ресурсами YARN (Yet Another Resource Negotiator), но концепция остается аналогичной.

JobTracker является центральным элементом в архитектуре MapReduce. Он выполняет несколько ключевых функций:

1. Распределение задач: Когда пользователь отправляет MapReduce-задание, JobTracker отвечает за разделение его на множество более мелких задач Map и Reduce. Эти задачи затем распределяются между доступными узлами-слейвами (TaskTracker), чтобы оптимально использовать ресурсы кластера.

2. Координация выполнения: JobTracker следит за выполнением всех задач, входящих в задание. Он отслеживает статус каждой задачи, получая регулярные отчеты от TaskTracker'ов. Если какая-то из задач не удается выполнить, например, из-за сбоя узла, JobTracker автоматически переназначает задачу другому TaskTracker'у, обеспечивая завершение работы.

3. Управление ресурсами: JobTracker управляет распределением ресурсов кластера, чтобы убедиться, что задачи выполняются эффективно и без конфликтов. Он учитывает загрузку узлов, их доступность и другие параметры, чтобы максимально увеличить производительность кластера.

4. Отчетность и мониторинг: JobTracker ведет учет выполнения заданий, предоставляя информацию о статусе задач, времени выполнения и любых проблемах, которые возникают в процессе. Эти данные могут использоваться для анализа производительности и дальнейшей оптимизации работы системы.

TaskTracker – это узел-слейв, который выполняет задачи, назначенные ему JobTracker'ом. В каждом узле кластера работает свой TaskTracker, и он выполняет следующие функции:

1. Выполнение задач: TaskTracker получает от JobTracker задачи Map или Reduce и выполняет их на своем узле. Каждая задача обрабатывается отдельно, и TaskTracker может параллельно выполнять несколько задач, если у узла достаточно ресурсов.