На мой взгляд, называть подобные регуляторные механизмы конкуренцией, как это делают авторы статьи, не совсем правильно, акцент тут должен быть иной. Нейрон не получает никакой личной выгоды от того, что именно он примет участие в запоминании. По-моему, здесь уместнее говорить не о конкуренции, а о кооперации.

Томография мозга

Для изучения работы мозга используется множество методов, каждый из которых, как водится, имеет свои плюсы и минусы и свою область применения. Если вы работаете с аплизиями, мышами или мухами, можно использовать любые методы. Хотите – создавайте генно-модифицированных животных со светящимися нейронами, которые можно разглядывать сквозь череп при помощи специального микроскопа, хотите – втыкайте микроэлектроды в интересующие вас нейроны и регистрируйте нервные импульсы, хотите – нарежьте мозг тонкими ломтиками и изучайте работу нейронов и проводимость синапсов, пока клетки еще живые (делают и так). Мышей, правда, жалко.

С обезьянами, включая человека, так поступать нельзя. Здесь генно-инженерные методы запрещены, равно как и сверление отверстий в черепе в научных целях. И тут на помощь приходят неинвазивные (то есть не требующие непосредственного вмешательства в мозг) методы. Они, как правило, совершенно (или почти) безвредны, а некоторые из них позволяют наблюдать за работой мозга в реальном времени. Наиболее интересные результаты дают различные виды компьютерной томографии, позволяющие получать объемные изображения мозга (или других органов) путем компьютерной обработки множества послойных снимков. Рентгеновская томография применяется для изучения анатомии мозга. Позитронно-эмиссионная томография (ПЭТ), часто применяемая совместно с рентгеновской, позволяет отслеживать участки мозга, наиболее активные в данный момент. Для этого человеку или другому животному вводят в кровь небольшое количество радиоактивного элемента (такого как фтор-18), который при распаде излучает позитроны. Позитроны сталкиваются с электронами и аннигилируют, испуская два гамма-кванта. Их-то и регистрирует прибор. Когда какой-то участок мозга начинает активно работать, к нему приливает больше крови. Соответственно, там становится больше радионуклидов и оттуда вылетает больше гамма-квантов. Звучит все это довольно устрашающе, но на самом деле процедура вполне безвредна, поскольку используемые количества радионуклидов ничтожны. Функциональная магнитно-резонансная томография (ФМРТ) позволяет обойтись и без рентгеновского излучения, и без введения радионуклидов: дело ограничивается тем, что голову помещают в мощное магнитное поле и пропускают сквозь нее радиоволны. Как и ПЭТ, данный метод регистрирует приток крови к активно работающим участкам мозга. Только этот приток определяется не по радионуклидам, а по оксигемоглобину (гемоглобину, соединенному с кислородом): чем больше в данном участке мозга оксигемоглобина, тем сильнее магнитно-резонансный сигнал.

Разрешение у всех этих методов, конечно, меньше, чем у воткнутых прямо в мозг электродов. Работу отдельных нейронов по томограммам проследить нельзя, да и приток крови к активным участкам мозга происходит не мгновенно. Тем не менее компьютерная томография – превосходный инструмент для выяснения вопроса о том, какие участки мозга задействованы в тех или иных видах психической активности.

Воспоминания можно увидеть под микроскопом

При формировании памяти новые отростки и синапсы отращиваются не только аксонами, но и дендритами. Именно непрерывное отращивание дендритами новых маленьких отросточков – дендритных шипиков – играет ключевую роль в обучении у млекопитающих. Шипики образуют синаптические контакты с другими нейронами и служат для приема сигналов. Наряду с отращиванием новых шипиков постоянно происходит исчезновение старых. Это, очевидно, приводит к полному или частичному забыванию результатов прежнего обучения. Таким образом, нейрон может «подключаться» к тем или иным своим соседям и отсоединяться от них, усиливать и ослаблять силу контакта с ними (то есть придавать больший или меньший «вес» получаемым от них сигналам).