Рис. 2. Здесь изображен пространственный срез – «фотография» пространства, то есть «один из кадров фильма», показывающего, как ситуация развивается во времени. Обычно положение точки в таком пространстве определяют с использованием декартовых координат (х, у, z). Однако есть и другой общепринятый способ определения ее положения в пространстве – через расстояние от начала координат и долготу с широтой


Ниже мы всегда будем рассматривать движения тел и света строго по радиусу, то есть без изменения долготы и широты. Также мы будем рассматривать идеальные сферические звезды, планеты или пылевые облака. В этом и состоит наше упрощение, так как в реальности пылевые облака, падающие на звезды, или даже гравитационные поля вращающихся черных дыр не обладают симметрией сферы[2].

Для наших целей главное, что, изображая пространство-время при таком упрощении, мы можем забыть про долготу и широту каждого события и рисовать только временную координату с · t и длину радиус-вектора события r (рис. 3). То есть в таком случае обсуждаемое изображение пространства-времени будет иметь два, а не четыре измерения.


Рис. 3. Если изображать на плоскости только временную координату с · t события и его расстояние r до центра системы координат, то каждая точка такой плоскости может представлять любое положение на сфере радиуса r в пространстве, то есть с любым значением долготы и широты. Иными словами, каждая точка нарисованной здесь плоскости суть двумерная сфера. Следует подчеркнуть, что на самом деле здесь изображена полуплоскость, так как r может принимать только неотрицательные значения


► Для тех, кто знаком со специальной теорией относительности, упомянем о еще одном допущенном упрощении. Дело в том, что мы изображаем пустое пространство – время (ct, r) на обыкновенной евклидовой плоскости (x, y). На такой плоскости расстояние Δl между двумя точками (ct>1, r>1) и (ct>2, r>2), разделенными пространственным Δx =Δr=r>1−r>2 и временным Δ>y =cΔt=c(t>1−t>2) смещениями, вычисляется с помощью теоремы Пифагора:


Δl>2 = Δy>2+Δx>2 = c>2Δt>2+Δr>2.


При этом, как следует из совокупности экспериментальных данных, такое расстояние в пространстве – времени следует вычислять по формуле Δs>2=c>2Δt>2 −Δr>2. Отличие в знаке существенным образом сказывается на аналитических вычислениях и свойствах геометрии пространства – времени. Учитывая это, последующее геометрическое моделирование вполне адекватно описывает физику черных дыр. ◄


Далее наши рассуждения будут достаточно строгими, хотя мы и будем использовать только наглядные геометрические образы без сложных аналитических математических обоснований, выходящих за рамки школьного курса. Рисуя картинки в этой книге, мы будем руководствоваться здравым смыслом и минимальным количеством данных, следующих из совокупности опытных фактов.

Итак, гравитация искривляет пространство-время. Это можно наглядно увидеть, изучая поведение лучей света в ее присутствии. Свет при этом удобен тем, что он самый быстрый в природе. Поясним, что мы будем считать лучом света. На рис. 1 изображен луч в том смысле, как он понимается в школьном курсе физики, а именно как путь, который проходит световой цуг в пространстве – траектория света. Нам же будет интересна кривая, вдоль которой проходит цуг в пространстве-времени, которую иначе называют мировой линией света. Именно это мы и будем считать лучом света, если не оговорено иное. Например, мировой линией покоящейся частицы является прямая, параллельная оси времени на рис. 3, тогда как ее траектория является точкой – проекцией такой прямой на ось