Как пишет Е. Слупецкий в предисловии к собранию избранных работ Лукасевича: «… проблема, которая интересовала Лукасевича больше всего почти всю жизнь и которую он стремился разрешить, прилагая необычайные усилия и страсть – была проблема детерминизма. Она вдохновила его на совершенно изумительную идею многозначных логик» [Slupecki 1970: vii]. Уже ранние, довольно объемистые, работы Лукасевича посвящены анализу понятий причинности [Lukasiewicz 1906] и вероятности [Lukasiewicz 1913]. Однако только в статье «О детерминизме»[44], которая является одной из вершин философствования на эту тему, Лукасевичу удалось дать строгую формулировку и решение глубоких философских проблем, которые возрождаются все вновь и вновь.
11. Лукасевич исходит из знаменитой 9-ой главы трактата Аристотеля «Об истолковании», где впервые формулируется фаталистический аргумент (см. ниже раздел 14) и обсуждается проблема логического статуса высказываний о будущих случайных событиях на примере завтрашнего морского сражения. По всем этим вопросам Аристотель предлагает свое решение[45]. Любопытно, что в начале статьи Лукасевич заявляет по поводу принципа противоречия: «Этого важного принципа, который Аристотель, а за ним многие мыслители считают глубочайшей опорой нашего мышления, мы не будем далее касаться» (курсив наш. – А.К.) Анализируя попытку Аристотеля опровергнуть свой собственный фаталистический аргумент, Лукасевич приходит к выводу, что «Рассуждение Аристотеля подрывает не столько принцип исключенного третьего, сколько основы одного из глубочайших принципов всей нашей логики, который в конечном счете он сам первым и провозгласил, а именно, что каждое предложение является либо истинным, либо ложным, т. е. оно может принимать одно и только одно из двух логических значений – истинность или ложность. Этот принцип мы называем принципом бивалентности ‹…›. Он не может быть доказан именно потому, что лежит в основании логики. В этот принцип можно только поверить и поверит в него тот, кому он покажется очевидным. Лично мне он не кажется очевидным. Поэтому мне позволительно этот принцип не принять и признать, что наряду с истинностью и ложностью существуют и другие логические значения, по крайней мере, еще одно – третье логическое значение» (см. настоящее издание, с. 233). И далее: «Вводя в логику это третье значение, мы изменяем ее основания. Трехзначная система логики… отличается от обычной известной до сих пор двузначной логики не в меньшей степени, чем неевклидовы системы геометрии отличаются от евклидовой геометрии» (курсив наш. – А.К.)
Конец ознакомительного фрагмента.