Можно сказать, что основы современного бума ИИ (искусственного интеллекта, или artificial intelligence, AI) заложили Йошуа Бенджио, Джеффри Хинтон и Ян Лекун – специалисты в области исследования и внедрения ИИ и лауреаты премии Тьюринга (которую называют Нобелевской премией в области информатики) за 2018 год. Подходы к машинному обучению и методы, которые разрабатывали эти специалисты в 1990-х и 2000-х годах, позволили сделать гигантский прорыв в таких сложных областях, как компьютерное зрение и распознавание речи.


Так что же такое современная компьютерная нейросеть?

Глава 2. Современная компьютерная нейросеть

Хочу сразу отметить: «искусственный интеллект» и «нейросеть» – понятия не тождественные, хотя и связанные. «ИИ» – обобщённое понятие для различных технологических решений. «Нейросеть – это одна из реализаций, один из механизмов, используемых в искусственном интеллекте, но механизм не единственный.


Современная цифровая нейросеть – это разновидность компьютерных программ, которые по своей структуре имитируют работу человеческого мозга. Отсюда, соответственно, и происходит их общее название – нейросети.


Такая программа состоит из множества взаимосвязанных узлов, называемых нейронами, которые обрабатывают и передают информацию друг другу. Каждый такой нейрон получает входные данные, выполняет над ними некоторые вычисления и передаёт результат следующему нейрону в сети нейронов.


В нейросети данные в момент запроса пользователя подаются на вход, затем проходят через множество слоёв цифровых нейронов, где каждый слой обрабатывает информацию по-своему. Каждый цифровой нейрон принимает решение на основе входящей информации, которую он получает от предыдущих нейронов, и передаёт свои результаты следующим нейронам. Именно таким образом нейросеть способна обучаться на примерах и улучшать свою работу, делая более точные прогнозы и принимая более сложные решения.


Эти нейроны соединены между собой через синапсы – каналы для передачи данных от одного элемента к другому. У каждого синапса есть определённый весовой коэффициент, показывающий степень его влияния на итоговый результат деятельности сети.


В начале обучения нейросети все веса выставлены случайным образом. По мере тренировок, если определённый маршрут ведёт данные к успешному решению задачи, значимость этого маршрута (или его вес) увеличивается. Этот процесс аналогичен укреплению нейронных связей в человеческом мозге в процессе обучения новым навыкам и закрепления навыков старых.


Современные нейросети уже используются для решения различных нетривиальных (сложных) задач, таких как распознавание образов, прогнозирование, классификация данных и построение библиотек. Нейросети также используют для редактирования данных в соответствии с заданными параметрами – обработка видео и звука, фотографий и нарисованных изображений. Кроме редактирования, нейросети способны генерировать и новые данные – создавать уникальный аудиовизуальный и текстовый контент.


Обучение нейросетей происходит путём загрузки в сеть набора данных с известными ответами и корректировки определений между разными нейронами таким образом, чтобы минимизировать ошибку предсказания. Для первичного обучения нейросетевых систем используются значительные по количеству данные.


Специфика современных искусственных компьютерных нейронных сетей заключается в их способности принимать обоснованные решения, опираясь на опыт, полученный ими раньше. Это отличает их от традиционных программных приложений, которые работают согласно жёстко заданной последовательности шагов, направленных на достижение желаемого исхода, где каждый возможный исход или действие заранее определён в их коде. Нейросети же разрабатывают свой собственный подход к решению задачи. Они самостоятельно выявляют образы, связи и правила, которые не были изначально заложены их создателями.