self.fc2 = nn.Linear(128, 10) # Второй слой для классификации (10 классов)

def forward(self, x):

x = x.view(-1, 28*28) # Преобразуем изображение в одномерный вектор

x = torch.relu(self.fc1(x)) # Применяем ReLU активацию

x = self.fc2(x) # Выходной слой

return x

# Загружаем данные MNIST

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = DataLoader(train_data, batch_size=1, shuffle=True) # Стохастический градиентный спуск (batch size = 1)

# Создаем модель, функцию потерь и оптимизатор

model = SimpleNet()

criterion = nn.CrossEntropyLoss() # Функция потерь для многоклассовой классификации

optimizer = optim.SGD(model.parameters(), lr=0.01) # Стохастический градиентный спуск

# Обучение

epochs = 1 # Одно обучение (можно увеличить количество эпох)

for epoch in range(epochs):

for data, target in train_loader: # Для каждого примера из набора данных

optimizer.zero_grad() # Обнуляем градиенты перед вычислением новых

output = model(data) # Прямой проход

loss = criterion(output, target) # Вычисляем потери

loss.backward() # Обратное распространение ошибок

optimizer.step() # Обновляем веса

print(f'Эпоха {epoch+1}, Потери: {loss.item()}')

# Пример завершения обучения

print("Обучение завершено.")

```

Объяснение:

1. Нейронная сеть:

– Мы используем ту же простую сеть `SimpleNet`, которая состоит из двух полносвязных слоев: один преобразует изображение в 128 признаков, а другой – в 10 классов для классификации.

2. Стохастический градиентный спуск (SGD):

– В `train_loader` установлен параметр `batch_size=1`, что означает, что обновление весов будет происходить после обработки каждого изображения (каждого примера). Это и есть стоходастический градиентный спуск.

3. Процесс обучения:

– Каждый пример (изображение) по очереди пропускается через модель, вычисляются потери и веса обновляются сразу после каждого примера. Это делает процесс обучения быстрым, но при этом обновления могут быть менее стабильными, так как каждый новый пример вносит шум и может изменять направление обучения.

Преимущества и недостатки стохастического градиентного спуска:

– Преимущество: Обучение происходит быстрее, так как модель обновляет веса после каждого примера. Кроме того, этот метод помогает избежать застревания в локальных минимумах, так как шум от каждого примера может помочь сети найти лучшие решения.

– Недостаток: Путь к минимизации может быть менее стабильным, так как каждый шаг зависит от одного примера и может приводить к колебаниям в процессе обучения. Это делает модель менее предсказуемой, и процесс обучения может «дрожать".


3. Мини-батч градиентный спуск:

– Этот метод является компромиссом между пакетным и стохастическим подходами. Мы делим данные на небольшие группы (батчи), обрабатываем каждую группу и обновляем веса после каждой.

– Этот способ стабилен и достаточно эффективен, так как позволяет использовать мощности GPU и в то же время дает более точное направление спуска.

Пример использования мини-батч градиентного спуска (Mini-Batch Gradient Descent) в PyTorch. В этом примере мы делим данные на небольшие группы (батчи) и обновляем веса после обработки каждой группы. Этот подход стабилен, эффективен и идеально подходит для использования на GPU.

Предположим, у нас та же задача классификации изображений из набора данных MNIST, но теперь мы будем использовать батчи.

```python

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader