4. Итоговая кросс-энтропия для всего набора данных вычисляется как среднее значение кросс-энтропии для всех примеров. Это позволяет оценить, насколько хорошо модель соответствует фактичным данным.

Кросс-энтропия имеет следующие важные характеристики:

– Она может быть использована для многоклассовой и бинарной классификации.

– Она штрафует модель за неверные уверенные предсказания вероятностей, что позволяет сделать её более уверенной и точной.

– Она штрафует большие различия между фактическими метками и предсказанными вероятностями сильнее, что делает её чувствительной к выбросам.

Выбор кросс-энтропии как функции потерь в задачах классификации обусловлен тем, что она стимулирует модель предсказывать вероятности классов, что часто является необходимым в задачах классификации.

– 

Категориальная кросс

-

энтропия

:

Используется в задачах многоклассовой классификации

,

где классы не взаимосвязаны

.

Категориальная кросс-энтропия (Categorical Cross-Entropy) – это функция потерь, которая часто применяется в задачах многоклассовой классификации, где классы не взаимосвязаны и каждый пример может быть отнесен к одному и только одному классу из набора классов. Эта функция потерь измеряет расхождение между вероятностным распределением, предсказанным моделью, и фактичными метками классов.

Применение категориальной кросс-энтропии в задачах многоклассовой классификации выглядит следующим образом:

1. Для каждого примера в наборе данных модель предсказывает вероятности принадлежности этого примера к каждому классу. Эти вероятности образуют вектор вероятностей, где каждый элемент соответствует вероятности принадлежности к одному из классов.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется категориальная кросс-энтропия для каждого примера. Формула для вычисления категориальной кросс-энтропии для одного примера i выглядит следующим образом:

Categorical Cross-Entropy(i) = -Σ (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где Σ означает суммирование по всем классам.

4. Итоговая категориальная кросс-энтропия для всего набора данных вычисляется как среднее значение категориальной кросс-энтропии для всех примеров.

Важно отметить, что в задачах многоклассовой классификации категориальная кросс-энтропия учитывает, как хорошо модель предсказывает вероятности для всех классов. Если предсказания близки к фактическим меткам классов, то значение категориальной кросс-энтропии будет близким к нулю, что указывает на хорошую производительность модели.

Важным аспектом применения категориальной кросс-энтропии является использование активационной функции "Softmax" на выходном слое модели, чтобы преобразовать необработанные значения в вероятности классов. Категориальная кросс-энтропия обычно работает с этими вероятностями, что делает её подходящей для задач многоклассовой классификации.

– 

Бинарная кросс

-

энтропия

:

Применяется в задачах бинарной классификации

,

где есть два класса

.

Бинарная кросс-энтропия (Binary Cross-Entropy), также известная как логистическая потеря (Logistic Loss), является функцией потерь, применяемой в задачах бинарной классификации, где есть два класса: класс "положительный" и класс "отрицательный". Эта функция потерь измеряет расхождение между предсказанными вероятностями и фактичными метками классов.

Применение бинарной кросс-энтропии в задачах бинарной классификации выглядит следующим образом: