Затем следуют два полносвязных слоя с функцией активации ReLU и функцией нормализации пакетов, а также слои dropout. Последний слой содержит 7 нейронов и использует функцию активации softmax для определения вероятности каждой из 7 эмоций.
Для компиляции модели используется оптимизатор adam, функция потерь categorical_crossentropy и метрика accuracy. Модель обучается на тренировочных данных в течение 50 эпох с валидацией на проверочных данных.
После обучения модели оценивается на тестовых данных и выводится точность предсказаний. Затем используется модель для предсказания эмоций на новых данных.
В этой главе мы рассмотрели основные концепции, которые лежат в основе нейросетей. Мы изучили, что такое нейрон, как он работает в нейросети, что такое веса и смещения, как нейрон принимает решения и как строится нейросеть. Мы также рассмотрели процесс обучения нейросети и то, как нейросеть корректирует свои веса и смещения, чтобы улучшить точность прогнозирования.
Итак, можно сделать вывод, что нейросеть – это мощный инструмент в области искусственного интеллекта и машинного обучения, который используется во многих приложениях. Основой нейросети является нейрон, который принимает входные сигналы, обрабатывает их и генерирует выходной сигнал. Нейросеть состоит из множества нейронов, объединенных в слои, и каждый нейрон имеет веса и смещения.
Мы также рассмотрели практические аспекты создания и обучения нейронных сетей с использованием библиотеки TensorFlow и фреймворка Keras. Мы описали процесс подготовки данных, создания модели, ее компиляции и обучения. Кроме того, мы обсудили важность проверки и оценки модели на тестовых данных.
Коды, которые мы рассмотрели, позволяют создать и обучать нейронную сеть для решения конкретных задач, таких как автоматическое определение эмоций и распознавание изображений, определение эмоций и рекомендательная система. Эти примеры демонстрируют, как можно использовать нейронные сети для решения различных практических задач.
В целом, первая глава предоставляет базовые знания и практические навыки в области нейронных сетей и глубокого обучения, которые могут быть полезны как для начинающих, так и для опытных специалистов в этой области.