Крысоробот Гордон из Рединга по количеству нейронов в мозге значительно умнее своих собратьев, но главная новизна эксперимента Уорвика – Уолли в том, что им впервые удалось установить непосредственный контакт с живым мозгом, находящимся в искусственной оболочке. Непосредственным показателем биоэлектрической активности нервных клеток при передаче нейронных импульсов выступают спонтанные перепады напряжения (т.н. биоэлектрический потенциал), определяемые разностью электрических потенциалов между 2 точками живой ткани. И именно такие электрические сигналы четко фиксировались на компьютерных экранах наблюдателей. Ключевой аспект исследований, по мнению авторов, заключался в понимании того, что же такое память. На данной модели исследователи по-разному экспериментируют с «маленьким живым мозгом», находящимся внутри робота. Они помещают робота в различные положения, заставляют его познавать окружающую среду и выясняют, насколько хорошо сохраняются эти воспоминания в мозге. Следующий шаг должен усилить эти воспоминания – в перспективе это может помочь в лечении болезни Альцгеймера, а также людям, пораженным инсультом. Мозг имеет приблизительно 100 тыс. нейронов, которые растут на множестве электродов. Коммуникация происходит как через эти электроды, которые фиксируют сенсорную информацию от тела робота, так и через «двигательные» команды, исходящие от мозга и поступающие на его колеса. Авторы эксперимента действительно находятся в контакте, потому что мозг удается стимулировать и он отвечает на их стимулы. Постепенно, по мере того как мозг учится управлять «телом» – роботом, у него возникает привычка к этой деятельности, и эта привычка усиливает образование связей между нейронами.


Нейротехнологии искусственного протезирования участков головного и спинного мозга. Обсуждая эти нейротехнологии, обратим внимание на нейроинженерные работы проф. Теодора Бергера (Theodore W. Berger) (рис. 19), который считается основоположником искусственного нейропротезирования в современной нейроинженерии.

Он проводит эксперименты по клеточным (молекулярным) механизмам пластичности синаптических связей и влиянию этой пластичности на функциональную динамику гиппокампа на сетевом и системном уровнях; является руководителем группы разработчиков технологии протезирования мозга в Центре нейроинженерии Университета Южной Калифорнии. Считается, что он якобы первым заменил гиппокамп крысы чипом в 2009 г. (рис. 20). Другими словами, считается, что именно он и его группа создали «искусственный гиппокамп». Эта технология где-то граничит с технологиями нейроинтерфейса. В настоящее время его группа разрабатывает технологию «нейронно-кремниевого интерфейса», используя многоабонентскую электродную матрицу на основе кремниевых соединений и методы выращивания тканевой культуры для последующей имплантации аппаратных моделей в мозг и замены поврежденной или дисфункциональной нервной ткани.


Рис. 19. Теодор В. Бергер (Theodore W. Berger), проф. инжиниринга Фонда Дэвида Паккарда (David Pakkard), проф. биомедицинской инженерии и нейробиологии, директор Центра нейроинженерии (CNE) Университета Южной Калифорнии (USC), доктор философии по физиологической

психологии Гарвардского университета


Чтобы понять масштаб проекта, на который нацелились Томас Бергер и его команда, нужно сделать определенное отступление и дать небольшие пояснения. Работа Т. Бергера направлена на протезирование функции памяти и на искусственное восстановление утерянной памяти. И хотя считается, что он «создал и имплантировал первый в мире искусственный гиппокамп», полученный им и его командой, результат лишь условно можно считать реальным восстановлением утраченной памяти.