Изучение биологических аспектов центральной нервной системы (ЦНС) находится на переднем крае научных исследований. Это стало возможным благодаря достижениям в медицинской науке и технике, обеспечившим настоящий прорыв в изучении функционирования человеческого организма. ЦНС включает в себя головной и спинной мозг, которые связаны с конечностями и органами при помощи проводящих нервных путей, относящихся к периферической нервной системе. Нейробиология обучения как раз и занимается исследованием вопроса, как эти системы, работая сообща, позволяют приобретать и удерживать в памяти новые знания и навыки.
В дополнение к нейробиологии есть множество других научных дисциплин, изучающих мозг, мышление и поведение и включающих в себя антропологию, психиатрию и психологию. Общими усилиями этих ученых формируется подробная «дорожная карта», которую каждый может эффективно использовать для обучения себя и других.
Ниже представлен обзор основных достижений, сделанных за последние пять лет и помогающих лучше понять, как мозг учится. Они легли в основу рекомендаций, изложенных в книге (тем, кто читал первое издание этой книги, новые данные помогут расширить и углубить приобретенные ранее знания). Эти достижения можно разбить на следующие категории:
• новые технологии визуализации мозговых процессов и их анализа;
• новые неврологические доказательства существования нескольких видов интеллекта;
• новые представления о том, как происходит в мозгу творческий процесс;
• новые методы манипулирования мозгом и нервной системой;
• новое понимание того, как может быть использован в учебном процессе искусственный интеллект и виртуальная реальность;
Новые технологии и статистические данные
Достижения в медицинской науке и технике ныне позволяют исследователям проникать внутрь мозга и тела человека. Современные технологии позволяют визуализировать мозговую активность. Компьютерная томография (КТ) сканирует мозг наподобие рентгенографии и дает возможность наблюдать различные участки мозга. Магнитно-резонансная томография (МРТ) позволяет следить за движением крови в мозгу и выявлять активизацию тех или иных структур или областей мозга. Наконец, есть еще позитронная эмиссионная томография (ПЭТ), которая позволяет создавать детальные цветные и даже трехмерные изображения внутренних тканей. Все эти томографы представляют собой достаточно большие аппараты, рассчитанные на размещение человека внутри, в своего рода трубе, а значит, они не подходят для исследования мозговой активности при групповом взаимодействии, а также в движении.
Есть и другие новые инструменты, более компактные и транспортабельные, позволяющие ученым изучать мозговую деятельность людей, занятых обычными делами в повседневной обстановке. К числу этих технологий относится электроэнцефалография (ЭЭГ), позволяющая отслеживать электрическую активность в мозгу и изображать ее в форме волн. Кроме того, есть еще магнитоэнцефалография (МЭГ), где в одном устройстве сочетаются МРТ и ЭЭГ и данные сливаются в более сложную картину. Ближняя инфракрасная спектроскопия (БИКС) позволяет исследователям видеть уровни окисления крови и сгорания глюкозы, а транскраниальная магнитная стимуляция (ТМС) активизирует определенные области мозга с помощью неинвазивного электрического тока. Все эти технологии и инструменты дают ученым возможность рассматривать мозг под разными углами и на разных уровнях – от крупных областей до мелких структур и даже отдельных нейронов.